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Single-molecular systems are a test bed to analyze to what extent thermodynamics applies when
the size of the system is drastically reduced. Isometric and isotensional single-molecule stretching
experiments and their theoretical interpretations have shown the lack of a thermodynamic limit at
those scales and the non-equivalence between their corresponding statistical ensembles. This dispar-
ity between thermodynamic results obtained in both experimental protocols can also be observed in
the entropy production, as previous theoretical results have shown. In this work, we present results
from molecular dynamics simulations of stretching of a typical polymer, polyethylene-oxide (PEO),
where this framework is applied to obtain friction coe�cients associated with stretching at the two
di�erent statistical ensembles for two di�erent system sizes, from which the entropy-production fol-
lows. In the smallest system, they are di�erent up to a factor of two, and for the bigger system the
di�erence is smaller, as predicted. In this way, we provide numerical evidence that a thermodynamic
description is still meaningful for the case of single molecule stretching.

I. INTRODUCTION

Small systems, unlike those that are in the thermody-
namic limit, do not have an extensive internal energy [1].
Due to the small number of particles, they are subject to
large �uctuations. Consequently, it becomes more chal-
lenging to obtain relations for average quantities, which
are standard in thermodynamics and statistical mechan-
ics of large systems. Gibbs thermodynamics, as we know
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it from standard texts [2], ceases to apply for such sys-
tems. In view of the numerous and important applica-
tions in nanotechnology; for instance in nano�uidics [3, 4]
and biology [5] this situation poses a problem: There is
a need to describe energy conversion on the small scale,
but a lack of su�cient theoretical understanding. At the
most extreme end of the small scale, we are not able to
properly describe statistical averages for single molecules.
Doubt has thus been raised on the applicability of stan-
dard thermodynamic equations to the stretching of single
molecules under all conditions [6].

In general, the energy involved in the stretching of a
su�ciently small polymer depends on whether one con-
trols the stretching length or the stretching force. The
average force for isometric stretching di�ers from that
for isotensional stretching. In the long polymer limit
they are the same, however, which has been veri�ed ex-
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perimentally, computationally, and theoretically. A very
good discussion of this is given by Süzen et al[7].
In an earlier paper [8], some of us extended Hill's

theory for thermodynamics of small systems[1] to time-
dependent stretching processes, by deriving expressions
for the entropy production for isometric and isotensional
stretching. This lead to rate laws with friction coe�-
cients that depended on the control variables. The aim
of the present work is to calculate such friction coe�-
cients and the corresponding entropy production using
computer simulations, and to verify that they depend on
the control variables. This is the �rst example of a dy-
namic coe�cient in molecular stretching.
We investigate the molecular stretching numerically

using molecular dynamics simulations [9]. As a model
we have chosen to use a united-atom model of poly-
ethylene oxide (PEO), cf. Fig. 1, well documented in
the literature[10]. This molecular model has all standard
modes of movement under tension; translation, rotation,
torsion and, eventually, the breaking of bonds, and lends
itself to a testing of the theoretical description.
In our simulations, the stretching process can be con-

trolled by the environment in two di�erent ways. The
endpoints of the hydrocarbon chain can be controlled by
either an external force, i.e. fext is constant, or by �xing
the terminal positions of the molecule, i.e. l is constant.
These isometric and isotensional ways to operate are il-
lustrated in Fig. 1a and b. The �gures show molecules
that are not fully stretched.
Typically, torsional degrees of freedom are associated

with lower energies and forces than bending, which in
turns is associated with lower energies and forces than
bond stretching. We thus expect the response to the
environment to change as each of these di�erent modes
of elongating the molecule become accessible. From the
simulation results, we shall �nd the appropriate dynamic
description, and relate the molecular properties to the
dissipation.
In the thermodynamic limit, the rate laws of the two

modes of operation are the same. Here we present for
the �rst time detailed numerical evidence that there is a
di�erence in the dynamics in the two cases, as predicted
from the method of Hill [8].

II. THEORY

The thermodynamic basis for our numerical single-
molecule stretching experiments was worked out earlier
[8], when we derived the governing equations for isometric
and isotensional experiments on single molecules. In the
classical thermodynamic limit, the same set of equations
applies to both cases. For small systems, however, there
are di�erent sets, as each set depends on how the system
is controlled by the environment [1]. An introduction to
the general idea of Hill and a more extensive explanation
on the structure of nano-thermodynamics can be found
in a recent book [11]. In the present work, our system is
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(a) The isometric simulation mode: The coordinate
system is chosen such that the z-axis is parallel to the
end-to-end vector of the molecule, and the average force
along êz exerted on the two end-particles is sampled for

each �xed length.

y

z

f(−êz) f(êz)

(b) sub�gure

The isotensional simulation mode: A force of magnitude
f is exerted on the end-particles along êz on the left and

right end-particles.

FIG. 1: �gure
Illustration of the isometric (a) and isotensional (b)

simulation mode. Each monomer is composed of three beads,
two methylene groups (grey) and one oxygen atom (red).

always just one polymer. The length and therefore the
number of monomers and the degrees of freedom vary.
A bar will be used above a symbol to denote the aver-
age property of an ensemble of systems. We recapitulate
the results of earlier [8] to provide a basis for the present
step; how the equations can be applied to understand
simulations and - in a possible next step - experimental
results.

A. Isometric experiments

In this experiment, we control the temperature T and
the length of the molecule, l. The change in the average
internal energy of a system is Ū , given by Gibbs equation;

dŪ = TdS + f̄dl, (1)
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where S is the system entropy, and f̄ is the average in-
ternal force working on the terminals, see Figure 1a. The
average internal energy can also change by adding heat
and work to the system, dŪ = dQ + f̄extdl. The length
change is a result of a change in the average external
force on the terminals, f̄ext. By introducing these rela-
tions in Eq. 1, we can identify the entropy change in the
surroundings by dS = dQ/T , while the average entropy
production per unit of time for the system (one molecule)
becomes

dSirr
dt

=
1

T
(f̄ext − f̄)

dl
dt
. (2)

We now denote the velocity by v ≡ dl/dt and the average
change in the force by ∆f̄ ≡ f̄ext − f̄ . The rate law for
the isometric case becomes:

∆f̄ = ξl(l)v, (3)

Here, ξl=ξl(l) is the friction coe�cient speci�c for the
length-controlled case. This is now of primary interest,
one of the two coe�cients we want to �nd.
Once we know the friction coe�cient, we can com-

pute the entropy production from Eq. 2, i.e. dS/dt =
v2ξl(l)/T . The entropy production is proportional to the
friction coe�cient of the length-controlled case. The en-
tropy production is zero when the external force is bal-
anced by the internal force, f̄ext = f̄ .

B. Isotensional experiments

In isotensional experiments, we control the tempera-
ture T and the force on the of the molecule, fext. The
average internal energy changes as

dŪ = TdS + fdl̄, (4)

The length of a single molecule is now �uctuating, and l̄
indicates its average. The �rst law takes the form dŪ =
dQ+ fextdl̄. By the same reasoning as above, we obtain
the entropy production per molecule

dSirr
dt

=
1

T
(fext − f)

dl̄
dt
. (5)

The controlled change in the force is ∆f = fext − f ,
resulting in the average stretching velocity v̄ = dl̄/dt.
The rate-law in the force-controlled regime becomes

∆f = ξf (f)v̄, (6)

where ξf=ξf (f) is the friction coe�cient at isotensional
conditions; the second target of this study. The entropy
production then follows as dS/dt = v̄2ξf (f)/T . The en-
tropy production is now proportional to the friction co-
e�cient of the force-controlled case.
In the thermodynamic limit, the two friction coe�-

cients are the same. Away from the limit this is not the

case, as the rate laws depend on the set of the environ-
mental control variables in use.
We shall �nd below that the stretching simulations of

PEO with the smallest molecule under investigation gives
a friction coe�cient for the case of Fig. 1a which is around
twice the value of the coe�cient for Fig. 1b, con�rming
the prediction from the theory that we can expect di�er-
ences between the two coe�cients.

C. The force in the entropic regime

Figure 1 illustrates the molecule for relatively small
forces, when it is in the entropic regime. In this regime,
the molecule behaves similarly to the thermodynamic
limit, because it has numerous degrees of freedom for
movements.
We assume the molecule to a good approximation

can be modeled as a freely-jointed chain in the entropic
regime with an e�ective bead length be� and an ef-
fective number of beads Ne�, with an unfolded length
lunf = Ne�be� [12]. In a system with solvent this would
correspond to an assumption of theta-conditions, that
is, the solvent is exactly poor enough to increase the in-
tramolecular forces to perfectly balance out the steric
e�ects. The statistics of the con�gurations of the system
then becomes similar to a random walk, and the radius
of gyration, Rg = lunf/

√
6Ne�, gives rise to the entropic

force fS

fS =
18kBT l

Ne�b2e�
. (7)

The length be� is expected to be close to the length of
each monomer.
At larger extensions, the forces will �rst become dom-

inated by unfurling of the torsional degrees of free-
dom, then the bending and �nally the stretching of the
bonds [13]. In these regimes the force and dynamics typ-
ically display nonlinearities.

D. Helmholz' and Gibbs' energies

Away from the entropic regime, we expect to be in
the small-system regime. In this regime there is a non-
trivial size dependency of properties which are normally
extensive. This is due to the fact that �uctuations in the
di�erent ensembles are di�erent, and lead to di�erent size
e�ects.
For the isometric experiments, there is a �uctuating

force for each length. If we let

〈f(t)〉l = f̄(l), (8)

we can compute the Helmholtz energy from

A(l) =

∫ l

l0

f̄(l′)dl′. (9)
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That is, the integral along the length-axis of the force-
elongation curves shown in Fig. 2, giving the area below
the curves.
For the isotensional experiments, there is a �uctuating

length for each force. If we let

〈l(t)〉f = l̄(f), (10)

the Gibbs energy is given by

G(f) =

∫ f

f0

l̄(f ′)df ′. (11)

That is, the integral along the force-axis of the force-
elongation curves shown in Fig. 2, giving the area above
the curves.
In the thermodynamic limit A and G are related by a

Legendre transformation. With ∆l = l − l0 and ∆f̄ =
f̄(l)− f̄(l0), we obtain

A(l) +G(f = f̄(l)) = ∆f̄∆l (12)

for su�ciently large systems.[8] Small systems in general
deviate from this, and the entropy production in the two
ensembles is di�erent. However, Eq. (12) is still valid
when the force is linear in the elongation, like it is in the
entropic regime.
The non-equivalence between the isometric and isoten-

sional statistical ensembles is the result of the di�erence
between the work done to stretch the molecule, f̄ l and f l̄,
respectively. Considering the nonlinear force-elongation
relationship f = al + bl2 + ..., with a and b two con-
stant parameters, we can easily show that up to linear
order both works coincide. The nonlinear term, however,
breaks down the equality thus indicating the failure of
the thermodynamic limit.
For the entropy production, it is useful to evaluate the

expression f̄ dl
dt − f

dl̄
dt from Eq. (2) and Eq. (5), which is

greater than or equal to zero in the second order of l for a
speci�c set of lengths and velocities. From this one would
expect the entropy production for the isometric ensemble
to be larger than for the intensional ensemble when the
force-elongation is nonlinear.

III. MODEL AND METHOD

While the theory presented above is of general appli-
cability, we choose a speci�c system for our numerical
experiments: a chain of poly-ethylene oxide (PEO) of
the form
CH3−[O−CH2−CH2]n−O−CH3, modeled with a united
atom model where each carbon is grouped with its
bonded hydrogen atoms. The PEO monomer consists of
one oxygen and two carbons along with their hydrogens.
As stated above and illustrated in Fig. 1, the endpoints of
the chain are controlled by either length (Fig. 1a, N, l, T
is controlled) or by �xing the endpoints in space (Fig. 1b,
N, fext, T is controlled).

The potential energy as a function of the coordinates
of the coarse-grained particles has contributions from
stretching, bending and torsion. Using a model that
includes these di�erent dynamics allows us to examine
the e�ect of the di�erent modes of stretching and the
nonlinearities on the results. The force �eld is compati-
ble with the LAMMPS [14] simulation package, that has
been used for all of our computations.
The bond stretching is given by a Morse potential

Ubond({Ri, i = 1, N}) = Dij

[
1− e−αij(rij−r̄ij)

]2

, (13)

which saturates to a �nite value at large separations. The
parameters used for the dissociation energiesDij were ob-
tained from density functional computations [15], and the
parameters for αij were found by requiring the Morse po-
tential to have the same curvature as the harmonic bond,
i.e. αij =

√
Ks
ij/2Dij . The harmonic force �eld param-

eterization is taken from van Zon et al.,[16] based on a
modi�cation of the explicit atom force �eld of Neyertz
et al.[17] The potentials for the bending and torsion of
bonds are

Ubend({Ri}) =
1

2

∑
{ijk}

Kb
ijk[θijk − θ̄ijk]2 (14)

and

Utors({Ri}) =
∑
{ijkl}

∑
{c}

Kt,c
ijkl cos c−1(φijkl), (15)

where i, j, k and l are atoms joined by consecutive co-
valent bonds, Ks

ij , K
b
ijk, K

t
ijkl and r̄ij , θ̄ijk, are force

constants and reference values, respectively, of stretch-
ing (s), bending (b) and torsion (t) energy contributions,
selected to reproduce molecular properties measured by
spectroscopy or computed by ab-initio methods. Note
that the sum over the torsional coe�cients includes ev-
ery possible dihedral. Non-bonded interactions were not
taken into account, which means that our model poly-
mer is surrounded by an implicit theta solvent. We make
this choice because an ideal chain of interacting subunits
would deviate from a Gaussian chain even in the thermo-
dynamic limit[12]. The force �eld parameters we use are
presented in Table I.[10, 16, 17]
The temperature was controlled with a Langevin ther-

mostat, which mimics the viscous aspect of a solvent.
During sampling the relaxation time was set to 1 ps, and
the temperature was set to 300 K. The time step used in
the simulations was 1 fs. All quantities presented were
averaged over 200 samples.
We obtain initial conditions with a low potential en-

ergy using a simulated annealing approach. After the
initialization setup all samples are heated up to 2000 K
during 0.1 ns before the temperature is slowly decreased
during 1 ns.
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TABLE I: Force �eld parameters for the stretching, bending and torsion,[10] with disassociation energies [15]

Bonds Ks
ij [kJ (mol Å2

)−1] Dij [kJ mol−1] r̄ij [Å]

C�C 2587.4 370.8 1.54

C�O 3094.0 344.5 1.43

Bends Kb
ijk [kJ mol−1] θ̄ijk [Å]

O�C�C 727.7 110.0

C�O�C 1070.1 112.0

Torsion
[kJ mol−1]

Kt,1
ijk Kt,2

ijk Kt,3
ijk Kt,4

ijk Kt,5
ijk Kt,6

ijk Kt,7
ijk

O�C�C�O 2.211 15.194 17.844 �32.460 �13.871 �1.189 12.322

C�C�O�C 5.183 5.610 6.272 �15.428 �0.678 �4.568 3.567

A. Case studies

In the present paper we present investigations of three
di�erent molecule sizes, N=12, N=24 and N=51. Some
simulations were also done with N=102. The forces var-
ied from 0.01 up to 5 nN, or up to the failure limit of the
molecule. The length-controlled simulations were sam-
pled evenly in the length, while the force-controlled sim-
ulations were sampled evenly on a log scale in the force.
This was done to distribute the data points more evenly
along the force-elongation curve. To ease the compar-
isons between system sizes, the molecule length will be
presented in units of the longitudinal length divided by
the number of bonds lb ≡ l/(N − 1) and l̄b ≡ l̄/(N − 1).

IV. RESULTS AND DISCUSSION

To obtain an intuitive understanding of the behavior
of the molecule during stretching, it is useful to study
the cylindrical radius Rc, de�ned here as the radius of
the smallest longitudinal cylinder that can envelop the
molecule, shown forN = 24 in Fig. 3. There is a sequence
of collapses, to be elaborated on below. Four snapshots
illustrate the molecular conformation in these regimes.
At small lengths we have a regime dominated by the en-
tropic elasticity, here the radius Rc is 2.3 Å and relatively
constant. When the molecule is stretched above lb = 0.5
Å, the torsional degrees of freedom are the �rst to be
con�ned, and the molecule is unfolded from a helical to a
planar con�guration. This transition where the C-O-C-C
backbone changes from a trans-gauche (ttg) order to an
all-trans con�guration (ttt) is elaborated in section Tor-
sional unfolding. After this follows the unbending and
�nally the bond stretching. Especially in regions where
several types of dynamics are at play, there is a nonlinear
response to stress.

A. The various stretching regimes

In the force-elongation curves Fig. 2 for the systems
with N = 12 (a), N = 24 (b) and N = 51 (c) we can
again identify the di�erent regimes. The entropic regime
is shown more clearly for N = 51, see Fig. 2d, where
lengths below 0.05 Å are considered to be close to zero.
The data in this region is consistent with a linear curve.
The range where torsion plays a role is indicated by an
orange background. The nonlinear transition zone to the
monomer-stretching regime is also displayed in more de-
tail in the insets.

1. The entropic regime

A predominantly linear relation between force and
length develops when 0.05 Å < lb, l̄b < 0.47 Å. This
is the entropic regime, for which results for N = 51 are
enlarged in Fig. 2d. From the slope of this curve we �nd
the e�ective length be� of the neighboring units of the
ideal chain that gives the correct force-elongation behav-
ior of the molecule in this regime. Within the accuracy
of the data presented in Fig. 2d, we see that the elonga-
tion behavior in this regime is well-described by an ideal
freely-jointed chain for forces up to about 0.05 nN. With
a persistence length beff/2 of 4 Å,[18] we e�ectively have
Neff = 10 beads. The Kuhn length beff corresponds to ap-
proximately twice the length of the individual monomers,
explained by the bending and torsion, which e�ectively
sti�en the chain. The force- and length-controlled cases
appear identical in this regime, as the force-elongation
curve here is well-described by a linear function. These
�ndings are in line with Eq. (12).
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(c) N = 51
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(d) Entropic region for N = 51

FIG. 2: Force-elongation curves from the isometric and isotensional simulations for N = 12 (a), N = 24 (b) and
N = 51 (c) as a function of the length per bond. The region for the torsional unfolding is marked with an orange
background, and the transition region to the monomer-stretching regime is shown more clearly in the insets. In (d)
we see that the entropic region for N = 51 is well described by a freely-jointed chain with Ne� = 10 and be� = 4.

2. The torsional unfolding

As the molecule is stretched further, the degrees of
freedom are reduced, and the freely-jointed chain model
is no longer applicable. The torsional degrees of freedom
are the �rst to be con�ned, and this occurs in the region
0.47 Å < lb, l̄b < 1.1 Å, marked with an orange back-
ground in Fig. 3 and Fig. 2. The beginning of the interval
was found by looking at the deviation from linearity in
Fig. 2d, and the end of the interval was found from the
in�ection point of Fig. 3. PEO strands are known to at-
tain a helical shape in the crystalline state, in which the
bonds of the C-O-C-C backbone are folded in a trans-
gauche (ttg) order.[19] This can be seen in the �rst two
snapshots in Fig. 3, and is also the case for PEO dis-
solved in water.[20] An increase in the force gives rise to

a transition from a helical ttg order to an elongated, pla-
nar all-trans con�guration (ttt), as seen in the last two
snapshots in Fig. 3.

From the �gures Fig. 2a-c, we can see a systematic
deviation that varies with molecular size. This is empha-
sized in the insets. For N = 12 we observe pronounced
oscillations in the force-elongation curve, for N = 24 we
observe smaller oscillations, and for N = 51 we observe
no oscillation. These oscillations in the length-controlled
ensemble are �nite size e�ects that originates from local
maxima in the potential of mean force associated with
the unfolding of the molecule. Here the molecule is me-
chanically unstable, and these modes are not accessible
in the force-controlled ensemble.[5] This leads to di�erent
�uctuations in the two ensembles.
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FIG. 3: The cylindrical Rc as a function of the length of
the molecule. Four snapshots of the molecule are

provided to illustrate the di�erent stretching regimes for
a molecule of length N=24. The region for the torsional
unfolding is marked with an orange background, where
the end of the range is found from the in�ection point
of the shown curve. One can see that in the two �rst

snapshots, the molecule attains a helical ttg order, while
in the two last snapshots the molecule is in a planar

all-trans con�guration.

3. The monomer-stretching regime

As the molecule is extended above l̄b > 1.1 Å, the
individual monomers are elongated. The molecule is
unbending, and the potentials for the stretching, bend-
ing and torsion give rise to a molecule-speci�c segment
elasticity,[13] increasingly dominated by the stretching of
the covalent bonds.
In this region, a small systematic di�erence appears in

the force-elongation curves between the length-controlled
and the force-controlled stretching experiments. This
can be seen in the inset of Fig. 2a-c. The molecule is
straightened out further, illustrated by the cylindrical
radius in Fig. 3 eventually falling to a value less than
half of the shortest bond length. The nonlinear contri-
butions in the Morse potential for the bond stretching
becomes increasingly prominent. From the derivative of
the force-elongation curve, show in Fig. 4, we observe a
maximum around l̄b = 1.2 Å. The probability for the
bonds to rupture completely is increasing, explaining the
force dropping to zero for the last points from the length-
controlled simulations in Fig. 2a-c.
These nonlinearities from the stretching of the Morse

potentials give rise to di�erent �uctuations in the two en-
sembles, and we expect to see an e�ect of the small sys-
tem size. The di�erences between the force-elongation
curves in Fig. 2a-c are largest in the transition regime
to the monomer-stretching regime, emphasized in the in-
sets. The di�erences are small, but they are �nite and

0
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df̄
/
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[n
N
/Å
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FIG. 4: The derivative of the force-elongation curve
from the length controlled simulations, df̄/dl for
N = 12, N = 24 and N = 51. The region for the
torsional unfolding is marked with an orange

background. We see that the maximum values coincide
at about lb = 1.25 Å.

systematic.

4. Gibbs and Helmholtz energies

The free energy-di�erences, and the deviation from
the Legendre transform in Eq. (12), are computed from
the force-elongation curves shown in Fig. 2a-c accord-
ing to section Helmholz' and Gibbs' energies, and shown
in Fig. 5. We divide by the work required to stretch
the molecule completely, in order to compare the di�er-
ent system sizes. The largest free-energy di�erence is
observed in the transition from the torsional-unfolding
regime to the monomer-stretching regime, see the insets
of the force-elongation curves in Fig. 2a-c. Both in the
case of N = 12 and N = 24, there is a clear corre-
spondence between the deviations in the force-elongation
curves in this region and the peak in the free-energy dif-
ference in Fig. 5. There is a signi�cant deviation from
Eq. (12), with the smallest system showing the largest
deviation, as expected.

B. Friction laws

1. Force controlled simulations

We can now use our simulations to estimate the fric-
tion coe�cient ξf = ξf (f) in Eq. (6). This was done for
the systems with N = 24 and N = 51 by perturbing the
force and determining the rate of change of the average
length. To this end, we �rst generated 200 independent
samples that each were equilibrated at 150 di�erent con-
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FIG. 5: The percentage-wise di�erence in the Gibbs and
Helmholtz energies for N = 12, N = 24 and N = 51
found by integration of the force-elongation curves in
Fig. 2a-c. We see that there is a signi�cant deviation
from Eq. (12), and the relative di�erence is largest for

the smallest system.

stant forces f0 for 5 ns. At time t = 0, the force on each of
these samples was increased by 140 di�erent force incre-
ments in the range 4− 28%. The length as a function of
time before and after the increase in the force is shown
in Fig. 6 for three force increments in the system with
N = 51, averaged over 200 samples.

From these results, we �nd that the time scale for the
initial linear force-response is ∼ 0.5 ps for N = 51. As
one can see in Fig. 6, this does not appear to depend on
the magnitude of the force increment. The ratio of the
force increment to the increase in the linear response is
equal within the accuracy of the data points. A similar
investigation of N = 24 results in a time scale of ∼ 0.2
ps. The time scale for the linear regime is related to
the relaxation time of the system, which depends on the
length of the molecule. Other timescales in the range
0.1-1 ps was explored and was found to give similar re-
sults, although with increased �uctuations, indicating a
reasonably good robustness on this parameter. Continu-
ing with the chosen time scales, the linear response dl̄/dt
was then estimated for a range of force increments ∆f , as
shown in Fig. 7 for molecules with N = 51 equilibrated
at f0 = 0.33, 0.67 and 1.00 nN. The friction coe�cient
ξf = ξf (f) was found from the slope of the force-velocity
curves, cf. Eq. (6). Unlike what is the case in the ther-
modynamic limit, the friction coe�cient was largely de-
pendent on the value of the force and the length of the
polymer.

1.215
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−1 −0.5 0 0.5 1

l̄ b
[Å
]

t [ps]

Constant f0
∆f/f0 = 4.8%
∆f/f0 = 6.8%
∆f/f0 = 8.8%

FIG. 6: The length as a function of time for chains of
length N = 51 before and after the force is increased by
4.8, 6.8 and 8.8% from f0 = 2.3 nN at t = 0. From this
we conclude that the timescale for the linear response is

∼ 0.5 ps for N = 51.

2. Length controlled simulations

To estimate the friction coe�cient ξl = ξl(l) in Eq. (3)
for N = 24 and N = 51, we stretch the molecule at a
range of velocities and estimate the increase in the force
∆f̄ associated with each stretching velocity for each sam-
ple. 200 independent samples were �rst equilibrated at
150 di�erent constant lengths l0 for 5 ns, and at time
t = 0 the samples were stretched at 80 di�erent constant
velocities v = dl/dt in the range 20 to 100 m/s for 1 ps.
The force response from the molecule ∆f̄ for each stretch-
ing velocity was then averaged over the same time scale as
used for estimating the linear response in the force con-
trolled simulations. The resulting force-velocity curves
for molecules N = 51 with initial lengths of lb = 0.824 Å
and lb = 1.192 Å can be seen in Fig. 7. Again, we found
the friction coe�cient ξl = ξl(l) by Eq. (3) from the slope
of these force-velocity curves. The variation in the coe�-
cient with the length of the molecule or the force applied
was similar to the results from the isotensional exper-
iments, but the coe�cients for force-controlled systems
were systematically smaller than for the length-controlled
systems. As the �uctuations increased signi�cantly for
shorter lengths, only lengths per bonds larger than 0.4 Å
is shown. Both curves showed a maximum near the rel-
ative length 1.2 Å per bond, where the Morse potential
for bond-stretching is strongly nonlinear.
The di�erence in the friction coe�cient can be ex-

pected from a dynamical investigation of the system, by
considering the time scales and following the approach
of Just et al. [21] to obtain the general form of the ef-
fective slow dynamics. The length of the molecule acts
as the slow variable, and the probability distributions
of the fast variables of the internal degrees of freedom of
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the molecule are di�erent for �xed force and �xed length.
This also leads to two di�erent damping constants.

C. The entropy production

The force-controlled friction coe�cient ξf = ξf (f) =
ξf (f(l̄)) found in section Force controlled simulations and
the length controlled friction coe�cient ξl = ξl(l) found
in section Length controlled simulations are presented as
a function of the length in Fig. 8 for molecules N = 24
and N = 51. The di�erence between ξf and ξl is smaller
for the largest molecule, as expected from Eq. (12).
The entropy production is found by multiplying this

coe�cient with the constant velocity squared, over the
temperature. The energy dissipation producing heat in
the surroundings is the entropy production times the
(constant) temperature. Apart from this trivial rescaling
factor, the basic properties are considered to be temper-
ature independent under the assumption of theta condi-
tions.
For very short lengths, the entropy production should

by de�nition go to zero. While the uncertainty in this re-
gion is rather high, we emphasize that zero is within the
margin of error. In the region of torsional unfolding, the
ensemble di�erence is largest for the smaller system with
N = 24 compared to the bigger system with N = 51.
This is as expected from the discussion of the di�erent
stretching regimes. The entropy production reaches a
maximum around 1.2 Å per bond for both system sizes,
well into the monomer-stretching regime. Again the en-
semble di�erence is signi�cantly larger for the smallest
system. This can be explained by the nonlinearity of the
Morse potential for the bond-stretching, giving rise to dif-
ferent �uctuations in the two ensembles. Comparing with
the derivative of the force-elongation curves presented in
Fig. 4, we see that the maxima appear to coincide. More-
over, any coupling to low-frequency tangential phonons
can also very quickly dissipate energy in this regime.
We have seen above that the magnitude of the friction

coe�cient di�ers between the two stretching modes, with
the length-controlled process having a higher friction co-
e�cient than the force-controlled process. It follows that
the �rst process dissipates more energy regardless of the
length of the molecule, as expected. Note that the force-
controlled simulations display signi�cantly larger size de-
pendence than what is seen in the length-controlled sim-
ulations.

V. CONCLUSIONS AND PERSPECTIVES

In small-scale systems, away from the thermody-
namic limit, standard thermodynamics is no longer valid.
In this case, thermodynamic potentials become non-
extensive and statistical ensembles are not equivalent.
Even if the system is very small, extensivity can be re-
stored, if one considers the set of replicas of the original
system as a large-scale system. Such a procedure, pro-
posed by Hill [1], makes it possible to apply the method
of thermodynamics on very small scales. This method,
initially proposed when the system is in equilibrium, was
extended in[8] to non-equilibrium situations for the case
of the stretching of a polymer.
In this article, we have shown that dissipation gener-

ated at small scales, is sensitive to the lack of equivalence
between statistical ensembles at small scales. Based on
earlier work [8], we have carried out simulations well be-
yond the thermodynamic limit. We have simulated the
stretching of a single PEO molecule of length N = 12, 24
and 51 under force-controlled and length-controlled en-
sembles, and have extracted friction coe�cients for the
largest two systems.
We have con�rmed systematic �nite size e�ects in the

two ensembles of general nature. In the static case, the
�nite size e�ects are most pronounced in the region of
torsional unfolding, and originate in local maxima in the
potential of mean force that are accessible only in the
length-controlled ensemble. This is visible for N = 24,
and even more so for N = 12. In the dynamic case, the
�nite size e�ect originate in the two ensembles having
di�erent �uctuations. This is predicted by theory and
con�rmed for the �rst time for the dynamical coe�cient.
For short polymers with N = 24, the friction coe�cient
of isometric stretching is roughly twice the value of that
of an ensemble with isotensional stretching. The di�er-
ence between the friction coe�cients decreases when the
length of the polymer is increased to N = 51.
Our study shows how non-equilibrium properties are

a�ected by the absence of the thermodynamic limit. The
method presented could be applied systematically to the
study of irreversible processes that take place at small
scales.
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