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Diffusion can be strongly affected by ballistic flights (long jumps) as well as long-lived sticking trajectories
(long sticks). Using statistical inference techniques in the spirit of Granger causality, we investigate the appearance
of long jumps and sticks in molecular-dynamics simulations of diffusion in a prototype system, a benzene molecule
on a graphite substrate. We find that specific fluctuations in certain, but not all, internal degrees of freedom of the
molecule can be linked to either long jumps or sticks. Furthermore, by changing the prevalence of these predictors
with an outside influence, the diffusion of the molecule can be controlled. The approach presented in this proof
of concept study is very generic and can be applied to larger and more complex molecules. Additionally, the
predictor variables can be chosen in a general way so as to be accessible in experiments, making the method
feasible for control of diffusion in applications. Our results also demonstrate that data-mining techniques can be
used to investigate the phase-space structure of high-dimensional nonlinear dynamical systems.
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I. INTRODUCTION

The diffusion of molecules and clusters of atoms on
substrates is of substantial importance for the operation of
nanoscale devices, control of chemical reactions, catalysis,
and self-assembly. Experiments [1,2] as well as numerical
simulations [3–5] have revealed that long jumps, i.e., long-
lived ballistic trajectories, can strongly affect the surface
diffusion of single atoms, molecules, and nanoscale clusters.
Such movements, named flights in the dynamical systems
community, have been studied for the motion of point particles
in periodic lattices [6], as well as on much larger scales such
as the geographic spread of diseases [7]. Apart from long
jumps, similar systems can also exhibit the opposite behavior:
staying in a vicinity for an inordinately long amount of time.
These kinds of jumps and sticks can result in anomalous
diffusion, i.e., diffusion with a mean square displacement
that grows faster or slower than linearly with time. Even
when the anomalousness is destroyed by noise or some other
mechanism [8], jumps or sticks may remain and strongly affect
the diffusion.

The diffusion of larger molecules is affected by the
dynamics of their internal degrees of freedom, which form an
energy reservoir capable of absorbing and releasing kinetic
energy [9,10]. The overall diffusion of these molecules is
normal, due to the strongly chaotic internal degrees of freedom
of the molecule [9,10] and the thermal noise from the substrate,
in contrast to the anomalous diffusion of point particles in pe-
riodic lattices [6,8,11]. Nevertheless, the molecule’s trajectory
contains sections in which it temporarily behaves similarly to
an anomalously diffusing object, moving ballistically (long
jumps) or remaining close to the vicinity of one unit cell (long
sticks).

Diffusion in dynamical systems has also been observed to
switch between long-lived movements and normal diffusive
behavior [12,13]. Many methods exist for studying dynamical
systems, but almost all of them have been developed for

simplified low-dimensional systems with typically one- to
four-dimensional phase spaces (see, e.g., Ref. [14]). For dy-
namical systems of higher dimension, few useful approaches
exist. In this article we propose a data-mining approach to
reveal links between energy fluctuations in the internal degrees
of freedom of a high-dimensional dynamical system (benzene
diffusing on graphite) on the one hand and the rare events (long
jumps and sticks) in the diffusion on the other. Links between
two variables or events are often studied using averaged
quantities, such as cross-correlation functions, mutual infor-
mation [15], Kullback-Leibler divergences [16], and tests for
Granger causality [17]. However, these approaches fail when
the events under study are rare, and their contribution to the
average is negligible. Therefore we use a conceptually different
approach, i.e., we use statistical-inference techniques and
analyze the success rate of the inference using receiver operator
characteristic curves (ROC curves) [18], which are a common
measure for the success of classification algorithms in machine
learning and data mining [19–22]. Using these prediction
methods in order to identify links between variables and future
discrete events provides a simplified framework for testing
for Granger causality in point processes. A conceptually
similar approach has recently been studied in the context of
neuroscience [23].

Having identified relevant predictors, we manipulate the
diffusion of the simulated molecule by deliberately trig-
gering them. Our approach is very general and can easily
be extended to the design of mechanisms that alter the
diffusion of larger molecules on other substrates. This article
thus presents a proof-of-concept study, demonstrating that
data-mining techniques can be used to extract useful infor-
mation from molecular-dynamics simulations. The arrows
indicate the amplitude and direction of the atomic motion,
being within (mode 1–9) or orthogonal to the plane of the
molecule (torsion modes 10, 11, and 12). Some modes are
degenerate in sets of two, namely, (1, 2), (3, 4), (7, 8),
and (10, 11).
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FIG. 1. (a) The prototype system, a benzene molecule on a graphite substrate [9,10]. The internal dynamics consist of bond stretching,
bending, and torsion. (b) The 12 vibrational eigenmodes of the linearized system (numbered arbitrarily). The arrows indicate the directions of
the vibrations. For modes 10, 11, and 12, which are torsion modes, the vibrations are out-of-plane. The motion for these modes (away from the
reader or towards them) is indicated with respect to the center of the hexagon.

II. MODELING A BENZENE MOLECULE
DIFFUSING ON GRAPHITE

As a prototype system for diffusion of large molecules, we
consider a benzene molecule on a graphite substrate [Fig. 1(a)].
A particularly suitable model for investigating the dynamical
properties of this system was developed in Ref. [9]. It contains
the essential nonlinear dynamics, without including any of
the myriad of extra complications that are not of interest
here. Similar models have been successfully used for more
complicated, less symmetric molecules [24]. The dynamics
are described with a classical atomistic force field, based on
the Tripos 5.2 force field [25]. The hydrogen atoms are treated
in a mean-field approximation, as their dynamics cannot be
described reliably classically.

Let ri denote the position of the ith CH complex, ordered
in such a way that i and (i + 1 mod 6) are neighbors in the
benzene ring. Let φi and βi be the angles between the bonds and
the torsion angles respectively. The internal potential energy
of the benzene molecule is written as a sum over bending,
stretching, and torsion of the bonds between the carbon atoms,

Vmolecule(r1, . . . ,r6) = 1

2
kr

6∑
i=1

(‖r(i+1)(mod6) − ri‖−r0)2

+ 1

2
kφ

6∑
i=1

(
φi − 2

3
π

)2

+ kβ

6∑
i=1

[1 + cos(2βi)], (1)

where kr and r0 are the C–C stretching force constant
and equilibrium distance, while kφ and kβ are the effective
bending force constant and the effective torsion constant.
In this work, we use the same values as in Refs. [9,10],
r0 = 1.47 Å, kr = 60.7 eV/Å2, kφ = 6.85 eV/rad2, and kβ =
0.247 eV. The internal degrees of freedom of the model
molecule display chaotic dynamics [9]. This acts as effective
noise and influences the friction and diffusion of the molecule
on the substrate [10].

As in Ref. [10], we represent the substrate using a three-
dimensional substrate potential for each CH complex that is
composed of a two-dimensional hexagonal sinusoidal potential

in the xy plane and a harmonic term in the z direction,

VCH(r) = −2Vc
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)]
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8π2

27a2
z2, (2)

where Vc = 25 meV is the potential corrugation, and a =
1.42 Å is the in-layer inter-atomic distance of graphite. A
Langevin thermostat with temperature 293 K and damping
parameter of 0.0025/ps is applied to each CH complex. It
model the thermal fluctuations and damping due to the heat
bath of the substrate. The viscous damping parameter has been
chosen sufficiently low for the diffusion to be dominated by
long jumps and sticks.

Realistic damping parameters for small molecules are
typically higher, around 1/ps. For larger molecules, little
information is available. It is known, however, that for larger
interfaces, friction can become extremely low due to structural
incompatibility [26]. As long jumps have been observed in
experiments on large molecules [1], we know that in some
cases the damping is in the regime that allows jumps to occur.
An example of a trajectory with long jumps is shown in Fig. 2.
A total of 16 molecular-dynamics simulations were run for a
time of 1.2 μs each. The 16 simulations differ only in their
randomly chosen initial conditions and the precise realization
of the applied Langevin thermostat. The coordinates of the
center of mass and configuration of the internal degrees of
freedom were stored every �t = 0.24 ps.

III. IDENTIFYING ANOMALOUS MOVEMENTS

We define a section of the trajectory as a long jump
if the direction of the velocity vector remains within the
vicinity of one orientation for τ time steps of length �t . As
the ballistic flights follow the substrate geometry, we detect
jumps using angular sectors of [c60◦ − 45◦,c60◦ + 45◦], with
c = 0,1,2,3,4,5 [e.g., the shaded area in Fig. 2(b)]. Similarly,
a section of the trajectory is taken to be a long stick if the
molecule stays within a roughly hexagonal neighborhood of
seven hexagons of carbon atoms on the substrate. This is shown
in Fig. 2(c).

The distributions of the durations of jumps and sticks are
shown in Fig. 3. To estimate and fit these distributions, we
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FIG. 2. (Color online) Detecting ballistic flights and subdiffusive sticks. (a) Example of trajectories of a simulated benzene molecule on
a graphite substrate in real space including ballistic flights (long jumps) and subdiffusive sticks. In between long jumps the mean-square
displacement of the center of mass of the molecule grows linearly with time and diffusion is much slower. (b) A short section of the trajectory
in velocity space with the long jump highlighted. (c) A short section of the trajectory in real space with a stick highlighted.

use data of the time lengths of jumps and sticks as estimated
from each of the 16 simulations, as well as two concatenated
data sets that contain jump or stick time lengths from all
16 simulations. We follow the suggestions of Ref. [27] con-
cerning appropriate ways of fitting heavy-tailed distributions
and especially power laws (PLs),

ρ(τ ) = α − 1

τmin

(
τ

τmin

)α

, (3)

with τmin being a lower cutoff value. We apply the software
package power law [28] to estimate α using a maximum
likelihood estimator and adapting the minimum τmin such
that the resulting density minimizes the Kolmogorov-Smirnov
distance. We compare maximum likelihood fits of a power law

FIG. 3. (Color online) Estimating the density of jump and stick
time length distributions by fitting several heavy-tailed distributions.
A loglikelihood ratio test revealed that the truncated power law (TPL)
is the most appropriate fit among the distributions tested [power law
(PL), TPL, stretched exponential, lognormal]. Note that the difference
between the PL fit and the lognormal fit are not visible. Consequently
only the PL fit is labeled.

(PL), a truncated power law (TPL), a lognormal distribution,
and a stretched exponential. Among these distributions, we
find that jumps and sticks are both best described by truncated
power laws, with exponents −2.45 (long jumps) and −2.87
(sticks). The upper limit of the power law scaling is likely due
to the exponential decay of correlations on long time scales
of order 1/η = 400 ps, enforced by the Langevin thermostat
used in the simulations. In Fig. 3 this exponential decay on
larger time scales is visible as the small deviation between
the tails of the fitted power laws and the exponential tails of
the fitted truncated power law. We also calculate the variance
of the estimated exponent α among the ensemble of 16 sets
of simulation data. The precise value of α varies among the
different runs. However, most of the values are within an
0.99 confidence interval centered around the ensemble means,
which are αjump = −2.45 for jumps and αsticks = −2.78 for
sticks. These means are also close to the values estimated using
the concatenated data set of all 16 simulations (see Fig. 3).

IV. PREDICTING LONG JUMPS AND STICKS

By considering the results of the simulations as a time
series, we can search for structures that precede or coincide
with long jumps or sticks. As the full trajectory of every CH
complex in the simulated molecule is known, any function
of the coordinates can, in principle, be used as an indicatory
variable yn. We are therefore free to choose physically relevant
quantities that could be influenced in experiments, namely,
the energy stored in the vibrational modes. These energies
we approximate by linearizing the Hamiltonian around the
equilibrium solution. Since the system has 18 degrees of
freedom, of which 3 are center-of-mass translation and 3
are rotation, there are 12 eigenvibrations, shown in Fig. 1.
The 36-dimensional phase space is thus summarized by the
energies stored in these vibrations. The 12 energies xi

n (i =
1,2, . . . ,12) are recorded as a multivariate time series {xn} =
{(x1

n,x
2
n, . . . ,x

12
n )}, at discrete time instances t = t0 + n�t ,

with �t being a constant sampling interval.
As predictors yn ∈ (μ1

n, . . . ,μ
12
n ,σ 1

n . . . ,σ 12
n ), we consider

sliding window averages μi
n = w−1 ∑n

l=n−w xi
l and sliding
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FIG. 4. (Color online) Examples of predictor distributions for modes that are linked (a), (b), (e), (f) or not linked (others) to the occurence
of events. Histograms of CPDFs p(sn � τ |yn) are plotted as lines over the marginal probability distribution p(yn) (plotted as black bars).

window estimates of the standard deviations σ i
n = (w −

1)−1 ∑n
l=n−w(xi

l − μi
n)2 (i = 1,2, . . . ,12). The sliding win-

dow was chosen to start w steps �t before the time step n

in which the prediction of the event occurring at time n + l

is made. The values of w shown here are w = 15 for long
jumps and w = 35 for sticks, with �t = 0.24 ps. In general,
w must be chosen carefully. If w is too large, fluctuations
that announce a predictor might be smoothed out and become
undetectable. Conversely, if w is too small, there will be many
fluctuations on different time scales in the predictor that are not
relevant for events. The values mentioned above were chosen
because they produce the best ROC curves.

Relevant predictors are then identified using naive Bayesian
classifiers [29], i.e., conditional probability distribution func-
tions (CPDFs) p(en+l � τ |yn). The event en+l is either a long
jump jn+l or stick sn+l starting at time instance n + l in the
future and lasting for a time τ�t or longer. The variable l

denotes the time difference between the time n when the
predictor yn was observed and the occurrence of the event
at time n + l. In the context of (weather) forecasting l is called
lead time. We study the connection between predictor variables
and events for several values of l. Whereas investigating
the nowcast szenario (l = 0) emphasizes the link between
predictors and events (as shown in Fig. 6), forecast scenarios
(l > 0; see Fig. 5) might be more relevant for applications.

Links between precursor and event can, e.g., be verified
by comparing ROC curves. However, whether a predictor
will be successful or not can often already by seen from the
conditional probability distribution. The black bars in Fig. 4
are the marginal distributions of both predictor variables, the
sliding window average μi

n,w and the sliding window standard
deviation σ i

n,w. The number of bins for each CPDF was adapted
such that each bin has at least two entries. The lines in Fig. 4

show CPDFs p(en+l � τ |yn) estimated for the event en+l being
either a ballistic flight or a stick, occurring at time n + l and
yn is one of the two predictors tested, namely, μi

n,w or σ i
n,w.

The most meaningful predictor, the value most likely to be
followed by an event, is the one that maximizes the CPDF.
Relevant predictors should lead to nonflat CPDFs, such as
displayed by full and dashed lines in Figs. 4(a), 4(b), 4(e),
and 4(f) in contrast to the flat CPDFs in Figs. 4(c), 4(d), 4(g),
and 4(h). A meaningful predictor should also be specific, i.e.,
not occur by chance without being related to an event. An
indication of specificity is that the maximum of the CPDF
does not coincide with a maximum of the marginal probability
distribution function (PDF).

In total we find qualitative differences between the distri-
butions estimated using the energy in modes 1, 2, 7, 8, and 9
and the ones estimated based on modes 3, 4, 5, 6, 10, 11, and
12. For both predictors μi

n,w and σ i
n,w and for both types of

events, the CPDFs generated from time series of modes 1, 2, 7,
8, and 9 display structure, whereas the CPDFs obtained from
modes 3, 4, 5, 6, 10, 11, and 12 are relatively flat. Additionally,
the marginal PDFs of modes 1, 2, 7, 8, and 9 possess several
maxima, while the marginal PDFs of the other modes decay
either slower as an exponential function or as a Gaussian.

The marginal PDFs of modes 1, 2, 7, 8, and 9 also
show a larger range of support, i.e., the average energy in
these modes calculated from the linearized Hamiltonian is
larger and so is the standard deviation in energy. This is
because in reality there are nonlinear terms in the energy,
including nonlinear coupling terms between the modes, that
also contribute to the energy. The energy in these nonlinear
terms can be comparable or larger than the energy in the linear
terms. If this were not the case, the system would not be
so ubiquitously chaotic. As we cannot assign the nonlinear
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FIG. 5. (Color online) Nowcasting ballistic jumps and subdiffusive sticks. (a) An example for an ROC curve. (b) and (c) AUCs for different
predictor variables μi

n and σ i
n, estimated for nowcasts, i.e., lead time l = 0. The 95% confidence intervals are shown as shaded areas in (b)

and (c).

mixing terms to specific degrees of freedom, it is impossible
to calculate the energy in a specific mode more accurately
or, indeed, check the equipartition of thermal energy between
the various modes. The different nonlinear coupling of modes
that are degenerate in the linearized system also leads to small
quantitative differences in the PDFs between sets of degenerate
modes.

Applying the CPDFs to make nowcasts and forecasts, we
formulate a binary decision variable based on a probability
threshold δ ∈ [0,max[p(en+l � τ |yn)]] for each time step n:

An =
{

1 if p(en+l � τ |yn) � δ,

0 otherwise.
(4)

An = 1 refers to issuing an alarm for an event to occur at time
n + l and An = 0 to issuing no such warning. The effectiveness
of An is evaluated by comparing the fraction of correct
predictions out of all observed events (true positive rate) to
the fraction of false alarms out of all nonevents (false positive
rate), i.e., by generating ROC curves [see Fig. 5(a)]. Each
value of the threshold δ corresponds to a single point in the
ROC curve. An area under the curve (AUC) indicating better
than random performance (curve on the diagonal) should have
a value larger than 1/2. In order to estimate 95% confidence
intervals for the AUCs, we additionally compute 100 AUCs,
generated by making random predictions.

As shown in Figs. 5 and 6, predictors based on modes 1,
2, 7, 8, and 9 have AUCs that are substantially higher than
the 95% confidence intervals. Similar results were obtained
for longer and shorter event durations and when testing for
the possibility of predicting long-lived movements with a lead
time l > 0. In this forecast scenarios [Figs. 6(a) and 6(b)]
we separate between test and training data set, by estimating
CPDFs on the first fc × 100% of the data and generating ROCs
and AUC on the remaining data. Figures 6(a) and 6(b) indicate
a certain forecast success for jumps and sticks up to 4.8 ps
before they occur, which is far in advance compared to the
time scales of the internal dynamics of the molecule (about
0.5 ps).

Taking a closer look at the successful predictors as indicated
by maxima of CPDFs, we find that a low standard deviation in
modes 1, 2, 7, 8, and 9 can be associated with the occurrence
of sticks, while a high standard deviation in these modes is
observed simultaneously with the occurrence of long jumps.

Furthermore, the CPDFs of μ
j
n with j = 1,2,7,8, and 9 suggest

that high values of the average energy can be associated with
long jumps, whereas any deviation of μ

j
n, with j = 1,2,7,8,

and 9 from their most likely values can be associated with the
occurrence of sticks.

We can make an important observation about the modes that
are connected to long-lived movements and the physical origin
of this connection. The modes with strong precursors display
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FIG. 6. (Color online) Forecasting long jumps and sticks. (a) and
(b): Comparison of nowcasts (l = 0) and forecasts (l > 0), both made
using the standard deviation as a predictor. Additionally, we separated
the data set into a test and a training part (90% for training, 10%
for testing) which is indicated by the factor fc = 9.0. Here 95%
confidence intervals were also estimated through random predictions
with parameters l > 0 and fc = 0.9.
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specific symmetries. Mode 9 is a breathing mode symmetric
under rotations by 60 degrees. Mode 1, 2, 7, and 8 are mapped
onto themselves by rotations over 180 degrees. By contrast, the
bending and stretching modes not showing predictors (3, 4, 5,
and 6) are all antisymmetric under rotation over 180 degrees.
For antisymmetric vibrations, the coupling with the substrate
with hexagonal symmetry is small or vanishes completely to
leading order. The torsion modes (10, 11, and 12) primarily
involve motion in the z direction and do not strongly couple
to the motion in the x and y direction. This is surprising,
since there are clear links between the anomalous behavior
and the torsional degrees of freedom. Specifically, if torsion
is removed completely, the diffusion of the model molecule is
known to become anomalous [10]. However, as they do not
couple directly to the center of mass, a small manipulation of
the torsional degrees of freedom does not strongly affect the
transport.

V. TRIGGERING LONG-LIVED MOVEMENTS

Having identified relevant predictors, one can trigger
long-lived movements and thus manipulate diffusion. In an
experiment, this could be accomplished by excitation of a
specific vibrational mode with radiation. In our simulations,
we achieve a similar effect by applying a viscous damping to
a particular mode (see Fig. 7). In more detail we simulate the
trajectory of a molecule for 242 ps without damping and then
242 ps with viscous damping of a particular mode. Damping
a relevant mode as, e.g., mode 1 induces a stick; i.e., the
molecule remains within a region of a few unit cells until
the end of the simulation. In contrast to this, damping
of a nonrelevant mode as, e.g., mode 10 has no apparent
quantitative effect on the diffusion of the molecule (see
Fig. 8). We chose damping over driving the system because it
suffices and keeps the system as simple as possible: Damping
introduces only one extra parameter, the damping constant,
rather than two, the frequency and amplitude of the driving.
Results are shown in Fig. 9. Diffusion decreases with damping
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FIG. 7. (Color online) Damping mode 1 induces a long stick;
i.e., the molecule remains within a region of the size of a few unit cells.
The trajectory is plotted in black without damping and in red (gray)
after the damping started. Note that both parts of the simulation repre-
sent the motion of the molecule during time intervals of equal length,
i.e., 242 ps before the damping started and 242 ps with damping of
mode 1. See Ref. [30] for this simulation in the form of a movie.
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FIG. 8. (Color online) Damping of mode 10 does not induce any
qualitative change of the molecule’s motion. The molecule continues
to diffuse over a wide range of the substrate, which is in contrast to
the stick induced by the damping of mode 1 (see Fig. 7).

for all modes, as the lower energy in the system makes it more
difficult for the molecule to overcome the diffusion barrier.
However, for modes 1, 2, 7, 8, and 9, we find an additional
drop in the diffusion at relatively low damping, followed by
a recovery. Note that these are exactly the modes providing
relevant predictors with high AUC values. The recovery is
likely related to the time scales of the dynamics of the center
of mass on the substrate, which is around 1 ps. When the
damping is strong, the nonlinear dynamics of the center of
mass on the substrate and in the internal degrees of freedom
are changed qualitatively. Consequently, jumps and sticks, if
present at all, may no longer work in the same way.

VI. DISCUSSION

In summary, we have demonstrated that long-lived jumps
and sticks of complex molecules on substrates can be related
to energies in specific internal degrees of freedom by using
ROC analysis as a framework. Apart from detecting links
between the vibrational modes and simultaneously occurring
long jumps or sticks, we have also studied the potential of
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this approach for predicting future long jumps and sticks. In
addition, we are able to deliberately trigger the long jumps
and sticks, modifying the diffusion, by damping the modes
that contain relevant predictors.

In nanotechnological applications a manipulation method
must be applicable to different molecules, and there must
be experimentally practical ways of implementing the con-
trol mechanism. While for this proof of concept study we
used a relatively simple prototype system, our approach is
applicable to larger, more complex, molecules, as it requires
only a sufficiently long phase-space trajectory generated by
a molecular-dynamics simulation. Moreover, the predictor
variables can be chosen in any way that facilitates control in
experimental settings. Our results demonstrate that statistical
inference has the potential to become a powerful method

for studying high-dimensional dynamical systems in general,
and understanding and manipulating molecular transport in
particular.
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