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Criterion for condensation in kinetically constrained one-dimensional transport models
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We study condensation in one-dimensional transport models with a kinetic constraint. The kinetic constraint
results in clustering of immobile vehicles; these clusters can grow to macroscopic condensates, indicating the
onset of dynamic phase separation between free-flowing and arrested traffic. We investigate analytically the
conditions under which this occurs and derive a necessary and sufficient criterion for phase separation. This
criterion is applied to the well-known Nagel-Schreckenberg model of traffic flow to analytically investigate the
existence of dynamic condensates. We find that true condensates occur only when acceleration out of jammed
traffic happens in a single time step, in the limit of strong overbraking. Our predictions are further verified with
simulation results on the growth of arrested clusters. These results provide analytic understanding of dynamic
arrest and dynamic phase separation in one-dimensional traffic and transport models.
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I. INTRODUCTION

A wide range of driven many-particle systems including
traffic flow [1], active colloids [2] and shaken granular
gases [3] exhibit interesting collective large-scale phenomena.
The interactions between the driven constituent particles cause
collective behavior such as collective slowing down that
can eventually emerge into macroscopic phenomena affecting
major parts of the system. In traffic, the interactions of vehicles
that avoid collisions lead to nontrivial, strongly nonlinear flow
behavior: increasing the number of vehicles does not necessar-
ily result in an increase of the throughput. To understand and
predict this behavior, it is important to know how the dynamics
organize in space. Do all particles slow down gradually or do
only certain particles slow down while others still move? An
intriguing question in this context is whether the interactions
between cars lead to macroscopic separation into arrested
and moving traffic, a transition analogous to an equilibrium
phase transition. The accumulation of a macroscopic fraction
of all particles into a cluster is called condensation in real
space. Recently, such condensation phenomena have been
studied in one-dimensional transport models [4–6]. Whether
and how dynamic condensation occurs remains a largely open
question and can be addressed analytically only in certain
exactly solvable models. Most work has focused on the
exactly solvable zero-range process (ZRP) [7,8] and related
models [9,10]. In these models the dynamics of particles is
typically specified per lattice site: particles can accumulate on
a given site while hopping from one site to the next. It has been
shown analytically that these systems exhibit condensation
and symmetry breaking, even in one dimension. The situation
is, however, different in traffic models, where vehicles must
follow each other and cannot accumulate on any site. In these
models, the vehicle dynamics are set by a kinetic constraint
between neighboring particles that guarantees vehicles do not
collide. The question is whether in these models, condensate
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transitions can still occur, and how they can be analytically
predicted based on the microscopic interactions of the vehicles
or particles. Although condensation and phase separation
phenomena have been investigated numerically in commonly
used traffic models [1,11,12] and some attempts have been
made to connect traffic models with the ZRP [13] and related
models [14], a general analytic treatment is lacking so far.

Here we present just such an analytic criterion of condensate
formation in traffic models, applicable both to traffic and to
more general driven systems. Our analysis is based on rate
equations for the generation, growth, shrinkage, and split up
of traffic jams. We establish a criterion for the occurrence
of extensively large jams as a function of the microscopic
interactions of the traffic model. Because of the generality
of the equations used, the criterion is generally applicable to
traffic and transport models. We gain insight into the dynamics
of jam creation, lifetime, and size. We apply this criterion to
the well-known Nagel-Schreckenberg (NS) [15] model and
related models of traffic flow to investigate analytically if and
how condensation occurs, hence answering the longstanding
question of dynamic condensates in this model [16]. We find
that a true condensate forms only in the special case where
the acceleration out of jammed traffic occurs in a single
acceleration step, in the limit of high braking probability. In
all other cases, arrested clusters either dissolve or split up.
We illustrate the growth dynamics of these arrested clusters
using long simulation runs and demonstrate the similarity to
the dynamics of a diffusion process. These simulation results
validate our analytic criterion and elucidate the formation
kinetics of condensates.

II. CRITERION

A. Class of models

We consider kinetically constrained one-dimensional trans-
port models that are defined by mass-conserving local dynam-
ical rules. The vehicles move unidirectionally over a discrete
lattice in discrete time. A vehicle can move freely when it is
out of the interaction range of other vehicles, but becomes
kinetically constrained when it closely approaches another
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vehicle: it must slow down to avoid a collision. This kind of
constraint is also present in more general models of transport
of particles. The kinetic constraint can, for example, be a
hard-core repulsion between neighboring particles. “Softer”
constraints with longer range are also possible as long as the
order of the particles is conserved. Once the kinetic constraint
is released, particles accelerate with a certain probability back
to free flow. We call the free-flowing particles “active,” and
the kinetically constrained particles “inactive.” To derive the
criterion for condensation, we consider the bulk of an infinitely
extended lattice.

B. Derivation of criterion

Inactive particles form clusters due to their dynamic inter-
action. Here we define a cluster as a sequence of particles in the
same state (active or inactive). A typical particle configuration
consists of several coexisting active and inactive clusters as
shown in Fig. 1. These clusters can grow and eventually reach
macroscopic size. We call a cluster a condensate, if in the limit
of infinite system size, the cluster contains an infinite number
of particles. Here we allow short-lived interruptions in the
sequence of inactive particles that exist on a time scale much
shorter than the typical time scale of growth or shrinkage of
the cluster. We call such small and short-lived interruptions
bubbles, in analogy to fluctuations in an equilibrium liquid
phase.

We investigate the conditions under which condensation
occurs in the stationary state in an infinitely extended system,
by analyzing the growth dynamics of inactive clusters. The
control parameters are the global particle density ρ and the
fluctuation parameter(s). We deduce the dynamics of clusters
of particles from the microscopic dynamics of the particles.

There are several competing processes that lead to growth or
shrinkage of clusters. Clusters can grow one by one by vehicles
leaving or entering at the boundaries (see cluster 3 in Fig. 1).
Clusters can also split up into two by vehicles changing their
state inside a cluster. Finally, two clusters can merge when the
cluster that separates them shrinks to zero.

Below we will analyze these cluster processes in detail to
find the condition for condensation. The idea is as follows: 1)
Inactive clusters must be unable to split up to become infinitely
large. 2) Inactive clusters must grow, i.e., their growth rate

rin rout

activeinactive inactive
cluster 1

flow direction

cluster 2 cluster 3 cluster 4

FIG. 1. (Color online) Schematic of vehicle transport in mass
transport models. The dynamic interactions lead to clustering of
immobile (inactive) particles. These inactive clusters coexist with
clusters of mobile (active) particles. A few coexisting clusters are
shown, as well as the inflow and outflow rate rin and rout of particles
at the upstream and downstream boundary of an inactive cluster. The
average distance between particles in active clusters must be larger
than the interaction distance, while the distance between inactive
particles is typically smaller than the interaction distance.

must be at least as large as their shrink rate. The growth of
existing clusters is, however, reduced by any new inactive
cluster that forms upstream; such a new inactive cluster takes
up particles and reduces the inflow to existing downstream
inactive clusters.

These two conditions have to be met independently:
because the split-up rate of clusters scales with the cluster size,
while the growth rate of clusters does not (it is always limited
to maximum 1 particle per time step), the two processes cannot
balance, and both conditions must be fulfilled simultaneously.

1. Splitting up of inactive clusters

We first investigate the split up of inactive clusters. Split up
occurs when the distance between inactive vehicles increases
spontaneously releasing the kinetic constraint. Such split
up is detrimental for condensation. Below we identify two
alternative conditions that prevent split up. One of these must
be satisfied to guarantee split up does not occur.

First, if the density inside active clusters is maximum,
ρina = ρmax, so that density fluctuations inside the cluster do
not occur, then split up cannot occur. For hard-core repulsion,
we have ρmax = 1.1

Second, if ρina is lower than ρmax, density fluctuations
do exist, but condensation will still occur if these density
fluctuations are short-lived, i.e., no stable active cluster can
form within an inactive cluster. This is the case when the
density of inactive clusters is much larger than that of active
ones, i.e., when ρact/ρina → 0. In this case any active “bubble”
requires an infinite amount of space; that much space is
not available inside inactive clusters, and as a result inactive
clusters do not split up.

We thus obtain the following condition for condensation:

ρina = ρmax OR
ρact

ρina
→ 0, (1)

where the limit here and in all equations below is taken with
respect to the fluctuation parameter for a given particle density
ρ. We note that this condition also implies that inactive clusters
cannot merge.

2. Growth versus creation of inactive clusters

We now consider the processes that grow and shrink the
inactive cluster due to in- and outflow of single vehicles. An
inactive cluster grows due to vehicles entering at the upstream
boundary at rate rin, while it shrinks due to vehicles leaving
the cluster at the downstream boundary with rate rout; see
cluster 3 in Fig. 1. These two processes grow and shrink the
inactive cluster, respectively, with rates r+ and r−. Because by
definition �t = 1, rates equal probabilities, and we can write

r+ = rin(1 − rout), (2)

r− = (1 − rin)rout. (3)

1It is possible to construct systems that have a range of densities
that make fluctuations impossible. In this case, by ρmax we mean any
density in this range.
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In steady state, r+ > r− is not possible due to particle
conservation. A steady state with cluster rates r+ < r− is
possible but implies that all inactive clusters have a finite size
and lifetime. This leaves us with r+ = r− as the only possible
condition with a condensate in the steady state. This means,
for condensation to occur, the difference �r = r− − r+ must
vanish relative to the absolute value of r+ or r− that sets the
typical time scale of the system. Hence

r− − r+
r−

= �r

r−
→ 0. (4)

The task is now to find an expression for �r in terms of basic
dynamical quantities. We rewrite �r using Eqs. (2) and (3) to
relate it to the in- and outflow rate of particles,

�r = (1 − rin)rout − rin(1 − rout) = rout − rin. (5)

Here the inflow rate rin of the inactive cluster (cluster 3 in
Fig. 1) is given by the average flow rate through the upstream
active cluster (cluster 2 in Fig. 1), i.e., the average velocity ṽ

of particles in the active cluster times their average density ρ̃.
Because the boundary between both clusters moves itself with
(negative) velocity vc, this increases the relative velocity of
inflowing particles to (ṽ − vc), and the inflow rate becomes

rin = ρ̃(ṽ − vc). (6)

The average density ρ̃ itself depends on the outflow rate
of the next upstream inactive cluster (cluster 1 in Fig. 1):
the outflow rate, rout, of cluster 1 equals the velocity, vact, of
active particles, times the density, ρ̃.2 This allows us to find
a corresponding relation for the boundary between cluster 1
and cluster 2, which we rewrite to obtain for the density ρ̃ in
cluster 2:

ρ̃ = rout

vact − vc
. (7)

Due to fluctuations, new inactive clusters may form inside
the active cluster (technically splitting up the active cluster).
This reduces the velocity of cars in this region. To obtain
an expression for the resulting average velocity ṽ in this
region, which now consists of active and inactive clusters,
we introduce the fraction f̃ of inactive particles. We can then
write

ṽ = f̃ vina + (1 − f̃ )vact. (8)

By inserting Eqs. (6)–(8) in Eq. (5), we find that

�r = rout − rout

vact − vc
[f̃ (vina − vc) + (1 − f̃ )(vact − vc)]

(9)

= routf̃
vact − vina

vact − vc
, (10)

which relates �r to the car velocities and outflow rates. Finally,
we express the fraction f̃ of inactive particles in terms of the
creation rate u per particle of inactive clusters, their average

2Here we have used that in steady state, the outflow rates of inactive
clusters 1 and 3 are the same.

lifetime, T , and their average length, n. In steady state this
fraction is

f̃ = uT n. (11)

Using Eqs. (10) and (11), our criterion for the growth rate of
clusters [Eq. (4)] then becomes

�r

r−
= routuT n(vact − vina)

r−(vact − vc)
→ 0, (12)

which simplifies to

routuT n

r−
→ 0, (13)

because vact > vina and vc < 0, and all velocities are finite.
Equation (13) provides the second criterion for condensation.
It ensures that the growth rate of inactive clusters is at least
as large as their shrink rate, so that inactive clusters can be
stable.3

We thus arrive at a twofold criterion for condensate
formation, consisting of Eqs. (1) and (13). The first equation
guarantees that inactive clusters do not split up; the second
equation assures that the growth of inactive clusters is not hin-
dered by the formation of new inactive clusters. Together, these
two equations provide a necessary and sufficient condition for
condensation.

III. APPLICATION TO TRAFFIC MODEL

We now apply the criterion, Eqs. (1) and (13), to specific
traffic models to demonstrate the occurrence or absence of
dynamic condensates. In particular, we focus on the Nagel-
Schreckenberg model of traffic flow [15], a well-studied simple
model that captures much of the behavior of real traffic.

A. Nagel-Schreckenberg model

The NS model is a one-dimensional cellular automaton
model with discrete time and space. The road consists of a
regular lattice of L sites, occupied by N cars with average
density ρ = N/L. Cars move with integer velocity over the
lattice and are updated synchronously. The velocity vi of car
i can be at most the maximum velocity vmax and becomes
constrained when the distance to the next car di < vi . The
following dynamical update rules for the NS-model are applied
in parallel to all N cars:

1 Acceleration: vi → min(vi + 1,vmax).
2 Avoiding collisions: If di < vi then vi = di .
3 Randomization: Decrease vi obtained in the previous

steps by 1, to a minimum of 0, with probability p.
4 Position update: xi → xi + vi , di → di − vi + vi+1.
The only source of stochasticity in the model is the

fluctuation parameter p that reflects the drivers’ individual
freedom to decelerate below vmax. We define car i as freely
flowing (active) if before the randomization step (3), vi = vmax.
While at low density, most cars move freely, at high density

3We note that in order to derive Eq. (13), we assumed high density.
For ρ < rout

vact−vc
, it follows from Eqs. (7) and (8) that rin < rout, so no

condensation can occur.
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FIG. 2. Space-time diagram of vehicles in the two deterministic
limits of the NS model, for p = 0.9998 (a) and p = 0.0002 (b).
Inactive vehicles are indicated in black. The horizontal axis represents
the car index. The simulations are performed at densities 20% above
the transition density ρtra.

or large braking probability, p, jams (inactive clusters) form.
The density above which stable jams form was estimated by
Gerwinski and Krug as ρtra = (1 − p)/(vmax + 1 − 2p) [17].

From simulations the idea has emerged that no sharp
transition between free-flow and jammed traffic occurs for
finite stochasticity [18–20]. This implies that there is no
condensate. Condensates might, however, form in the deter-
ministic limits p → 1 and p → 0 of the model. Numerically,
no such condensation has been found in the limit p → 0.
However, our own recent numerical results suggests that
condensation does occur in the limit p → 1, at least for
vmax = 2 [12]. To appreciate the strikingly different behavior
in the two deterministic limits, we show space-time diagrams
constructed from simulations for vmax = 2 in Fig. 2. In the
limit p → 1, a condensate forms as illustrated by the thick
black line in Fig 2(a). A jam nucleates and grows into a
condensate that contains all excess particles above the critical
density. In contrast, in the limit p → 0, there are many small
jams [Fig. 2(b)] that do not coalesce, and no macroscopic
condensate forms. Some jams disappear and new jams are
created. Below we investigate analytically the formation of
condensates for all different cases of p, starting with vmax = 2.

B. Nagel-Schreckenberg with 0 < p < 1 (vmax = 2)

Simulations suggest that for finite stochasticity, 0 < p < 1,
there is no condensate. Indeed, we will show that in this case,
the second condition [Eq. (13)] is not fulfilled. To see this, we
first note that for finite p, vehicles slow down randomly, and
the average velocity is smaller than vmax. Hence, the inflow rate
of jams, rin, is smaller than 1. Since we can rewrite rout/r− =
1/(1 − rin) using Eq. (3), we conclude that the first factor in
Eq. (13), rout/r− > 0.

Furthermore, also u > 0: due to velocity fluctuations at
finite p, the distances between cars varies and cars can come
within the interaction range with finite probability. Hence, new
jams are formed even at arbitrarily low density and u > 0.

Because the remaining factors in Eq. (13), T and n, are
always larger than zero (a jam always exists for at least one

time step and consists of at least one car), we conclude that
Eq. (13) is not fulfilled and thus there is no condensate. This
is in agreement with the consensus in the literature about the
absence of a sharp transition between free-flowing and jammed
traffic for 0 < p < 1 [18–20].

C. Nagel-Schreckenberg in the limit p → 1 (vmax = 2)

In the limit p → 1, cars almost always overbrake. To
determine whether condensation occurs in this limit, we
analyze the scaling of all quantities in Eqs. (1) and (13) as
a function of the vanishing distance to the deterministic point:
�p = 1 − p → 0.

With vmax = 2 and p → 1, free-flowing traffic has average
velocity vmax − p = 1, and jammed traffic has velocity 0.
Hence, cars accelerate in a single step out of the inactive
cluster, and the outflow rate equals the probability of accel-
eration, rout = �p. According to Eq. (7), it then follows that
the density in active clusters scales as ρact ∼ �p. Meanwhile,
the density of a jam, ρina, is bounded from below due to
the finite interaction range, and must be higher than 1/vmax.
Consequently, the second part of Eq. (1) is fulfilled, meaning
that inactive clusters do not split up.

To check the second part, Eq. (13), we note that because
rin → 0 in the limit p → 1, we can approximate r− = (1 −
rin)rout ≈ rout. We thus find that

routuT n

r−
→ uT n, (14)

reducing the criterion to the scaling of u, T , and n.
The scaling of u can be estimated as follows: The distance

between cars behaves as a diffusion process. Hence, we can
estimate the creation rate u of new jams from the time τ

it takes for the root mean square of the change �d of the
distance d between subsequent cars to grow to the average
distance itself: �d ≈ 〈d〉. For a random walker, the number
of changes necessary to accumulate a change of 〈d〉 is 〈d〉2,
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FIG. 3. (Color online) Creation rate per car of new jams as a
function of the distance �p to the deterministic point p → 0 [red
(upper) points, �p = p] and p → 1 [blue (lower) points, �p = 1 −
p]. The dashed lines have slope 1 [red (upper) data points] and slope
2.3 [blue (lower) data points].
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while for ballistic motion, the number of changes is 〈d〉. We
will allow for a general power 〈d〉β . Because the time to change
the distance between two cars by one is of order (�p)−1, we
obtain

τ ∼ �p−1−β. (15)

Because u ≈ 1/τ , we obtain u ≈ �pβ+1. With simulations we
find u ∼ �p2.3±0.1 (Fig. 3), and hence β = 1.3, an exponent
between random walk and ballistic motion. The quantity u

thus vanishes on approach of the deterministic point.
We now consider the scaling of n. A divergence of n by

definition means that condensation occurs, since n indicates
the number of cars in a jam. Therefore, the maximum scaling
of n that does not a priori indicate condensation, is that n is
constant. We will take this maximum scaling, and will show
below that, nevertheless, condensation occurs.

The scaling of T , the average lifetime of jams, can be
estimated from the average time it takes for a car to accelerate
out of a jam; this time diverges as 1/rout = 1/�p. Hence, the
average jam lifetime scales as T ∼ O(�p−1) if n is constant;
any faster decrease would imply that the number of cars in a
jam grows and thus again that a condensate forms.

With the scaling obtained for u, n, and T , Eq. (14) becomes

uT n ∼ �pβ. (16)

This quantity goes to zero in the limit �p → 0, thus meeting
the requirement for condensation. We therefore expect con-
densation to occur in the limit p → 1, in agreement with the
simulation results shown in Fig. 2.

It is interesting to investigate the time dependence of the
condensation process. In Fig. 4 we plot the number of jams
and the growth of the largest jam as a function of time. For
p close to 1, the number of cars in the largest jam increases
with a power of 1/2, while the number of jams decreases
accordingly. This power-law scaling is reminiscent of the
diffusive dynamics of the random-walk process, in which the
probability of attachment of a car equals that of detachment.
Indeed, we have shown above that a necessary criterion for
condensation is r+ = r−, i.e., inactive clusters increase or
decrease with equal probability. This analogy between the size
of jams and the position of a random walker was pointed out
before by Nagel and Paczuski for the cruise control limit of
the NS model [21], and our analytical model predicts it as a
necessary condition. We thus find that our criterion concludes
correctly on the existence of dynamic condensates and predicts
the dynamics of their growth through a random-walk process.

D. Nagel-Schreckenberg in the limit p → 0 (vmax = 2)

Simulations suggest that in this limit, no condensate
forms [22,23]. We will address this issue with the criterion
starting with Eq. (13). For p → 0, the braking probability p is
vanishingly small. As a result, the outflow rate of jams rout =
1 − p. Using rin = rout − �r , we can hence approximate
r− = rout(1 − rin) ≈ p + �r . A priori we do not know which
term dominates the scaling of r− when p vanishes: p or �r .
If �r determines the scaling, we immediately see that the
left-hand side of Eq. (12): �r/r− = �r/�r �= 0 and there is
no condensation. If p determines the scaling, we can simplify
Eq. (13) as follows: Because the outflow rate is close to unity,

FIG. 4. (Color online) Time evolution of jams for p approaching
1. (a) Number of cars in the largest jam versus time. The dashed line
has slope −1/2. (b) Number of jams versus time. The dashed line has
slope 1/2. The jam size diverges, and the number of jams decreases
over time indicating condensate formation.

the density of free flow is high and any random slow down
of a car immediately causes the upstream neighbor to become
kinetically constrained. Because this happens with probability
p, the jam creation rate per car is u ∼ p, as is also shown
by the simulation results in Fig. 3. With u ∼ p, r− ∼ p and
rout ≈ 1, Eq. (13) becomes

routuT n

r−
∼ T n. (17)

Since both T > 0 and n > 0, we conclude that there is no
condensation in the limit p → 0, in agreement with the
simulation results [22,23].

E. Nagel-Schreckenberg with vmax > 2

It is frequently assumed that the NS model behaves
qualitatively similar when changing vmax [24,25]. Here we will
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FIG. 5. Space-time diagram of vehicles in the NS-model with
p = 0.9998 and vmax = 3, entire simulation run (a), and enlarged
section at early times (b). Inactive cars are shown in black. Horizontal
axis represents car index; to follow the evolution of jams, we plot the
space-time diagram in a frame comoving with the speed of jams. The
emerging white regions inside the jam indicate a split up of the original
jam that becomes more pronounced at later times. The enlarged
section in (b) shows that this split up emerges at the downstream
boundary of the jam.

investigate this analytically and find that in the limit p → 1
there is a qualitative difference. Surprisingly, for vmax > 2,
there is no condensation in this limit, in contrast to vmax = 2.

To see this, we note that for vmax = 2 acceleration from jam
to free flow occurs in a single step. Therefore, an accelerating
car immediately leaves the jam, keeping the density of the
jam finite. In contrast, for vmax > 2, the acceleration needs
multiple steps in the limit p → 1. A car leaving the jam is still
part of the jam until it reaches the maximum velocity. This
lowers the density of jams, and leaves Eq. (1) unfulfilled. In
the spaces created inside the jam, new free flow can emerge
that splits up the jam. This mechanism prevents the formation
of an infinitely large jam.

We demonstrate the split up of jams in the space-time
diagram obtained in simulations; see Fig. 5. The simulation
starts from random initial car positions; after a jam has
nucleated, it grows, but shortly after that, the first free flow
starts to appear inside the jam. This becomes most obvious
in Fig. 5(b), where we show a magnified section at early
times. All free-flow “bubbles” inside the jam clearly emerge
at the downstream boundary of the jam. This free flow is
persistent and covers larger regions at later times. These
pictures demonstrate that there is no single macroscopic
condensate for vmax > 2.

We confirm the absence of condensation for vmax = 3
numerically by studying the number of cars in the largest jams
in simulations; see Fig. 6. In contrast to vmax = 2 [Fig. 4(b)],
the number of cars no longer diverges as p approaches 1,
i.e., the data are not approaching anymore the asymptotic line.
The curves for all p overlap, demonstrating the absence of
condensation, and the qualitative difference to vmax = 2.

FIG. 6. (Color online) Time evolution of the number of cars in
the largest jam for vmax = 3, for values of p approaching 1. The
dashed line has slope 1/2. The jam size does not diverge; the data for
all p approaching 1 overlap.

To complete the analytical discussion of the NS model
we shortly comment on the limits 0 < p < 1 and p → 0
for vmax > 2. In both cases, the argument is similar to that
of vmax = 2. For 0 < p < 1, fluctuations in velocity create
fluctuations in distances between free-flowing cars. As a result,
the creation rate of jams u > 0. In the limit p → 0 the creation
rate of jams vanishes with p, u ∼ p, but the growth rate of jams
vanishes just as quickly, so there is no condensation.

In summary, the surprising conclusion of our analytical
treatment of the NS model is that only in the case vmax = 2
(limit p → 1) is there a true condensate transition.

F. Application to velocity-dependent randomization model

An extension of the Nagel-Schreckenberg model is the
velocity-dependent randomization (VDR) model, in which
there are two fluctuation parameters instead of one: pf controls
the fluctuations in free flow, while pj controls the fluctuations
of jammed traffic. This model takes account of the fact that
drivers may behave differently depending on the traffic context,
free flowing or jammed. We will show that in this model, where
we have two control parameters, one for the creation rate and
one for the growth rate of clusters, there is a condensate even
in the limit pf ,pj → 0.

To do so, we use simulations to determine the size of
the largest jam as a function of pj and pf . To incorporate
both pf and pj , we modify the NS model update scheme by
adding an extra step before the randomization step 3. If car i

is jammed (vi < vmax after step 2) then p = pj , and if car i

is free flowing (vi = vmax) then p = pf . Further, the update
scheme is identical to the NS update scheme. We plot the size
of the largest jam in a two-dimensional contour plot in Fig. 7.
This plot shows that a condensate forms if

pf

pj

→ 0. (18)

This numerical finding is indeed in line with the qualitative
argument that the creation rate of new jams, controlled by pf ,

062812-6



CRITERION FOR CONDENSATION IN KINETICALLY . . . PHYSICAL REVIEW E 89, 062812 (2014)

log(p
j
)

lo
g(

p f)

−4 −3.5 −3 −2.5 −2 −1.5 −1

−1

−2

−3

−4

−5

−6

−7

50

100

150

200
Many jams

Few jams

FIG. 7. (Color online) Diagram illustrating the number of cars
in the largest jam (see color bar) as a function of pf and pj in
the velocity-dependent randomization model. Simulations were per-
formed with 1000 cars at density ρ = 0.4. The diagram (logarithmic
with base 10) is plotted in the region close to pf → 0 and pj → 0.
Whether a condensate forms depends on how the limit to zero is taken.
A few jams signal a condensate forms only in the limit pf /pj → 0.

must vanish faster than the growth rate of jams, controlled by
pj . This finding thus again demonstrates the principle of the
criterion for condensation.

IV. CONCLUSION

We have derived a criterion for condensation in one-
dimensional transport models with a kinetic constraint that
causes clustering of immobile particles. Whether this cluster-
ing leads to macroscopic phase separation depends on two
factors: First, density fluctuations in inactive clusters must
be small enough to prevent the split up of inactive clusters.
Second, the growth rate of inactive clusters must dominate the
formation rate of new inactive clusters since those reduce the
inflow of existing clusters downstream.

The latter condition means that condensation is only
possible if the growth rate of inactive clusters equals their

shrink rate. This establishes a generic analogy of the size of
inactive clusters to the position of a random walker, that was
previously found by Nagel and Paczuski [21] and Barlovic
et al. [26] for specific models. With this analogy we can
explain the growth dynamics of condensates as well as the
distribution of lifetimes and sizes of inactive clusters upon
condensation.

We have applied the criterion to the well-known Nagel-
Schreckenberg traffic model and find that a condensation
transition occurs only in the limit p → 1 with vmax = 2. In
all other cases traffic jams are finite. We note that nevertheless
there can be a discontinuity in the mean velocity of cars [23] or
its derivative, reflecting a sudden onset of jams. This situation,
where there is a discontinuous transition but no macroscopic
condensate, appears different from traditional equilibrium
transitions, and is likely related to the nonequilibrium nature
of the system.

The applicability to traffic is general. We derive the criterion
from basic postulates, therefore it does not depend on the
specifics of the model. The challenge in applying the criterion
to specific models will be to find the size and density of jams in
terms of the overall density and fluctuations [Eqs. (1) and (13)]
of the individual model.

A wider applicability of the criterion is demonstrated by
analyzing condensation in the velocity-dependent random-
ization model, in which the creation rate of new traffic
jams is controlled by two stochastic parameters, one for
the fluctuations of free-flowing traffic (pf ), and one for
those of jammed traffic (pj ). Exploring both parameters,
we demonstrated a new condensate transition in the limit
pf ,pj → 0 if pf vanishes faster than pj , in agreement with
the idea behind our criterion for condensation.
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052116 (2013).

[6] S. N. Majumdar, M. R. Evans, and R. K. P. Zia, Phys. Rev. Lett.
94, 180601 (2005).

[7] F. Spitzer, Adv. Math. 5, 246 (1970).
[8] M. R. Evans and T. Hanney, J. Phys. A 38, 195 (2005).

[9] R. D. Vigil, R. M. Ziff, and B. Lu, Phys. Rev. B 38, 942 (1988).
[10] R. Rajesh and S. Krishnamurthy, Phys. Rev. E 66, 046132

(2002).
[11] R. Barlovic, T. Huisinga, A. Schadschneider, and M.

Schreckenberg, Phys. Rev. E 66, 046113 (2002).
[12] A. S. de Wijn, D. M. Miedema, B. Nienhuis, and P. Schall,

Phys. Rev. Lett. 109, 228001 (2012).
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