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We investigate how generic the onset of chaos in interacting many-body classical systems is in the

context of lattices of classical spins with nearest-neighbor anisotropic couplings. Seven large lattices in

different spatial dimensions were considered. For each lattice, more than 2000 largest Lyapunov

exponents for randomly sampled Hamiltonians were numerically computed. Our results strongly suggest

the absence of integrable nearest-neighbor Hamiltonians for the infinite lattices except for the trivial Ising

case. In the vicinity of the Ising case, the largest Lyapunov exponents exhibit a power-law growth, while

further away they become rather weakly sensitive to the Hamiltonian anisotropy. We also provide an

analytical derivation of these results.
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The concept of microscopic chaos in many-particle
systems plays an essential role in the foundations of sta-
tistical physics [1–3]. In classical systems, chaos is defined
by the appearance of exponential instabilities with respect
to infinitesimal perturbations of the initial conditions. The
spectrum of these instabilities is characterized by a set of
eigenvalues—Lyapunov exponents—and the correspond-
ing eigenvectors. In general, interacting, many-particle,
classical systems are expected to be chaotic. The largest
Lyapunov exponents and the whole Lyapunov spectra have
been calculated numerically for classical many-body sys-
tems, such as gases of hard-core particles [4,5], fluids with
soft interactions [6], and lattice two-dimensional rotators
[6,7], and analytically in a few cases [8–14]. Nevertheless,
little is known about the universality of the features of
the Lyapunov spectra, in particular when it comes to the
systems with smooth dynamics. It is also not clear how
generic the onset of chaos actually is, and what happens
in many-particle systems in the vicinity of integrable,
i.e., nonchaotic, limits of the microscopic Hamiltonians.

This Letter deals with the above issues on the basis of a
systematic numerical and analytical investigation of the
systems of interacting classical spins. These systems have
been extensively studied, e.g., in the context of the spin
diffusion problem [15–17], but their Lyapunov spectra
have not yet been computed. Finite classical spin systems
are also known to exhibit nontrivial integrable limits [18].
Another aspect of our motivation is the connection to the
quantum case. There is a growing appreciation that generic
interacting many-particle quantum systems exhibit relaxa-
tion behavior similar to their classical chaotic counterparts,
in particular as far as nuclear spin decays in solids are
concerned [19–27]. In a broader context, the important
conceptual development in the present study is the massive
character of the numerical investigation covering an entire
class of Hamiltonians.

In this Letter, we consider several large lattices of inter-
acting classical spins. For each lattice, we compute the
largest Lyapunov exponent �max for several thousand
randomly selected microscopic Hamiltonians. Thereby,
we obtain the dependence of the largest Lyapunov
exponent on the anisotropy of the spin-spin interaction.
Our results give a strong indication of the absence of
integrable Hamiltonians for infinite spin lattices with
nearest-neighbor interaction besides the trivial Ising case
(explained below). We also find that, to the extent afforded
by our numerical accuracy, the system becomes chaotic
in the immediate vicinity of the integrable Ising case, with
�max exhibiting a universal power-law scaling. Further
away from the Ising limit, �max becomes only weakly
dependent on the Hamiltonian anisotropy, especially for
bipartite lattices. The Letter is concluded with a simple
analytical derivation that describes the above-mentioned
numerical results.
We investigate the seven lattices shown in Fig. 1: (L1) a

chain, (L2) a rectangular ladder, (L3) a square lattice,
(L4) a bilayer of square lattices, (L5) a cubic lattice,
(L6) a triangular ladder, and (L7) a triangular lattice. The
interaction Hamiltonian for each lattice is of the nearest-
neighbor (NN) type with periodic boundary conditions,

H ¼ XNN
i<j

JxSixSjx þ JySiySjy þ JzSizSjz; (1)

where ðSix; Siy; SizÞ � Si are the three projections of the ith

classical spin normalized by the condition S2
i ¼ 1.

We numerically integrate the equations of motion asso-

ciated with the Hamiltonian (1): _Si ¼ Si � hi [28], where
hi is the local field given by the expression

h i ¼
X
jðiÞ

JxSjxex þ JySjyey þ JzSjzez: (2)
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Here ex, ey, and ez are the unit vectors along the respective

directions, and jðiÞ implies the summation over the nearest
neighbors of the i-th lattice site. We use the fourth-order
Runge-Kutta algorithm and choose a time step of 0.005,
sufficiently small so that, on the time scales of our simu-
lations, energy is conserved. The initial conditions of each
trajectory are chosen randomly on the energy shell with
zero total energy, which corresponds to infinite tempera-
ture [29].

In order to obtain �max, we numerically calculate a phase
space trajectory and, at every time step, track the evolution
of a tangent space vector that defines an infinitesimal
perturbation of it [22,30]. The asymptotic average growth
rate of this vector is equal to the largest Lyapunov
exponent. In all cases, �max becomes size-independent
for sufficiently large lattices.

For each lattice, we computed �max for many combina-
tions of the coupling constants randomly selected on the
‘‘interaction sphere’’ J2x þ J2y þ J2z ¼ 1. Specifically, 8000

combinations selected from the isotropic distribution were
selected for the lattices (L1), (L3), (L5), and 2000 combi-
nations for each of the remaining lattices. In addition, in
order to investigate the scaling behavior near the Ising
limit, we have processed more combinations in the vicinity
of Jz ¼ 1, namely 1000 for the lattices (L1), (L3), and (L5)
and 250 for the others.

Our main numerical findings, namely �max as a function
of the parameter Jmax � maxðjJxj; jJyj; jJzjÞ, are presented
in Fig. 2. The maximum value Jmax ¼ 1 is realizable only
in the Ising case, and thus represents the integrable limit

with �max ¼ 0. The minimum value of Jmax is 1=
ffiffiffi
3

p
.

It corresponds to either Heisenberg case Jx ¼ Jy ¼ Jz
or ‘‘anti-Heisenberg’’ case Jx ¼ Jy ¼ �Jz (or equivalent

cases). In Fig. 3, we present the rescaled plots

�maxðJmaxÞ=�maxð1=
ffiffiffi
3

p Þ for lattices (L1–L5). On the basis
of the results presented in Figs. 2 and 3, we make several
important observations.
(i) For all lattices considered, no integrable cases besides

the Ising case Jmax ¼ 1were found. This indicates that, for
infinite lattices of classical spins with the nearest-neighbor
interaction, the existence of another integrable case is
highly unlikely.
(ii) The value of �max is mainly controlled by Jmax,

especially for the bipartite lattices.
(iii) The dependence �maxðJmaxÞ for bipartite lattices

(L1–L5) has nearly universal form, as illustrated by the
rescaling shown in Fig. 3.
(iv) The above dependence is nearly flat below Jmax �

0:85; i.e., away from the integrable limit �max is very
weakly sensitive to the details of microscopic interaction.
(v) Near the integrable limit Jmax ¼ 1, to the best of our

numerical accuracy (1� Jmax > 10�8), each lattice, bipar-
tite or not, becomes immediately chaotic, and, as shown in
Fig. 2(b), exhibits an approximate power-law scaling

�max ffi �ð1� JmaxÞ1=3, where � is a constant.
(vi) As can be seen from Fig. 2(a), the nonbipartite

lattices (L6) and (L7) show a fork-shaped spread of �max

(L1) (L2) (L3) (L4)

(L5) (L6) (L7)

FIG. 1. Lattices investigated in this work. Bipartite: (L1)
chain, (L2) rectangular ladder, (L3) square lattice, (L4) bilayer
of square lattices, (L5) cubic lattice. Nonbipartite: (L6) triangular
ladder, (L7) triangular lattice.
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FIG. 2 (color online). Largest Lyapunov exponents. Each point
represents one �max obtained numerically for a lattice indicated
in the plot legend with one randomly chosen set of values Jx, Jy,

and Jz as described in the text. (a) Linear plot. (b) Log-log plot.
The inset shows the prefactor � of the power-law fit �max ¼
�ð1� JmaxÞ1=3 as a function of the number of nearest neighbors
n with squares for (L1–L5), triangles for (L6, L7), and solid line
for the fit � ffi n1=2.
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as Jmax approaches 1=
ffiffiffi
3

p
. The upper and the lower tips of

the fork correspond to the anti-Heisenberg and Heisenberg
cases, respectively.

Gross features of the above results can be reproduced by
rather simple analytical estimates. In particular, away from
the Ising case, the plateau values of �max seen in Fig. 2(a)
at Jmax < 0:85 can be estimated with a factor-of-two
accuracy as the typical frequency of one-spin motion given
by the root-mean-squared value of the local field hi at

the infinite temperature: �max � ½nðJ2x þ J2y þ J2z Þ=3�1=2,
where n is the number of the nearest neighbors. This
expression also predicts that the heights of these plateaus

scale as n1=2, while the inset of Fig. 3 indicates that the
actual scaling is close but somewhat steeper.

Now we turn to the approximation for the dependence
�maxðJmaxÞ as the system approaches the Ising limit.
We assume that Jz�Jx, Jy, which implies that Jmax¼Jz.

We also introduce variable J?�½ðJ2xþJ2yÞ=2�1=2¼
½ð1�J2maxÞ=2�1=2 to denote the typical value of the
transverse coupling. We consider two phase space trajec-
tories fSiðtÞg and fSiðtÞ þ �SiðtÞg, where f�SiðtÞg is an
infinitesimal difference. In order to estimate �max, we
linearize the equations of motion (2) with respect to
small �SiðtÞ and keep the leading order in terms of J?=Jz,

d�Si’
dt

¼ Jz
X
jðiÞ

Cij
z ðtÞ�Sjz; (3)

d�Siz
dt

¼ J?
X
jðiÞ

Cij
’ðtÞ�Sj’; (4)

where �Siz and �Si’ are the projection of vectors �Si on

the directions of vectors ez and ez � SiðtÞ, respectively. The
third projection of �Si does not appear in Eqs. (3) and (4),
because it can be expressed in terms of—�Siz a
consequence of the constraint S2

i ¼ 1. The parameters

Cij
z ðtÞ and Cij

’ðtÞ are determined by SiðtÞ and SjðtÞ and

have characteristic fluctuation times 1=J? and 1=Jz,
respectively.
Now, we make an assumption justified by the final result

[Eq. (12)] that J? 	 �max 	 Jz. We estimate the growth
of the typical values of �Siz and �Si’ over time � such that

�max 	 1=� 	 Jz. On the time scale �, the parameters

Cij
z ðtÞ stay nearly constant, while Cij

’ðtÞ strongly fluctuate,

so that hCij
’ðtÞi� � 0. We first write

�Si’ðtþ �Þ � �Si’ðtÞ þ �Jz
X
jðiÞ

Cij
z ðtÞ�Sjz; (5)

�Sizðtþ�Þ¼�SizðtÞþJ?
Z tþ�

t
dt0

X
jðiÞ

Cij
’ðt0Þ�Sj’ðt0Þ: (6)

In this problem, a relatively slow growth of Si’ is coupled

to a random-walklike growth of Siz. In order to extract
�max, we, therefore, look at the leading terms in the growth
of �S2i’ and �S2iz,

�S2i’ðtþ �Þ � �S2i’ðtÞ þ 2�Jz
X
jðiÞ

Cij
z ðtÞ�SjzðtÞ�Si’ðtÞ;

(7)

�S2izðtþ �Þ ¼ �S2izðtÞ þ J2?
Z tþ�

t
dt0

Z tþ�

t
dt00

� X
jðiÞ;kðiÞ

Cij
’ðt0ÞCik

’ ðt00Þ�Sj’ðt0Þ�Sk’ðt00Þ: (8)

In Eq. (8), we neglected the term linear in J?, because
hCij

’ðtÞi� � 0.
Since we are only concerned with the scaling of �max

with Jmax and n, we convert Eqs. (7) and (8) into an order-
of-magnitude estimate for the typical growth of �S2i’ and

�S2iz. The estimate includes (i) dropping lattice index in

Eqs. (7) and (8), (ii) estimating the instantaneous values of

parameters Cij
z ðtÞ and Cij

’ðtÞ by 1, (iii) replacing the sum in
Eq. (7) by

ffiffiffi
n

p
(a consequence of the random sign of the n

terms in that sum), and (iv) approximating the integral term

in Eq. (8) by J2?�ð�S’Þ2
R1
0 dt0hPjðiÞC

ij
’ðtÞCij

’ðtþ t0Þit �
J2?�ð�S’Þ2

ffiffiffi
n

p
=Jz. The factor

ffiffiffi
n

p
=Jz in the latter estimate

is due to n terms in the sum, each producing a contribution
to the integral of the order 1=hiz � 1=ðJz

ffiffiffi
n

p Þ. Finally, after
dividing thus simplified Eqs. (7) and (8) by ð�S’Þ2 and

ð�SzÞ2, respectively, we obtain
�S2’ðtþ �Þ
�S2’ðtÞ

� 1þ 2�
ffiffiffi
n

p
Jz

�SzðtÞ
�S’ðtÞ ; (9)

�S2zðtþ �Þ
�S2zðtÞ

� 1þ �
ffiffiffi
n

p J2?
Jz

�S2’ðtÞ
�S2zðtÞ

: (10)

Since the parameters �S2’ and �S2z should grow at the same

rate, this implies that
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FIG. 3 (color online). Largest Lyapunov exponents for the
bipartite lattices (L1–L5) from Fig. 2(a) rescaled by dividing

by �0 � �maxð1=
ffiffiffi
3

p Þ. The dotted line represents �max ffi
J1=2maxð1� J2maxÞ1=4. The inset shows �0 as a function of the
number of nearest neighbors n.
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�SzðtÞ
�S’ðtÞ ffi

�
J?
Jz

�
2=3 � ð1� JmaxÞ1=3: (11)

Substituting Eq. (11) into Eq. (10) and comparing the right-
hand side with the expression 1þ 2�max�, we finally
obtain the estimate,

�max ffi
ffiffiffi
n

p
J1=3maxð1� J2maxÞ1=3 �

ffiffiffi
n

p ð1� JmaxÞ1=3; (12)

which is consistent with the numerically observed
1=3-power law shown in Fig. 2(b). In Ref. [14] the same
power law was obtained for weakly interacting dilute gases
via a perturbation expansion around the integrable ideal
gas. The prefactor scaling as

ffiffiffi
n

p
is also compatible with the

numerical results, as illustrated in the inset of Fig. 2(b).
Equation (11) predicts further that the components of the

Lyapunov eigenvector corresponding to �max depend sys-
tematically on whether they are parallel to the z direction
or not. As illustrated in Fig. 4, this prediction also agrees
with our numerical results.

Our derivation of Eq. (12) is based on the assumption of
the random fluctuations of the sum in Eq. (6). However, in
the Ising limit, the Fourier transform of this sum contains
only a finite number of frequencies. Therefore, in the
vicinity of the Ising limit, recurrences may occur if corre-
lations in Siz do not decay sufficiently fast. Such recur-
rences, in turn, would contradict our assumption of the fast
decay of the time correlations of the above sum. This
would be most problematic for lattices with smaller num-
bers of nearest neighbors, such as spin chains. Indeed, we
observe in Fig. 2(b) that spin chains exhibit larger devia-
tions from the 1/3-power law than other lattices. The above
recurrences may, in fact, be the route to breaking down the
chaotic nature of the spin dynamics around the Ising limit.
However, our numerical results indicate that if such a
breakdown occurs, it occurs at values of jJ?=Jzj< 10�4.

Finally, we mention that the above estimate may be
repeated for the case of Jx and Jy smaller but not much

smaller than Jz. In this case, � must be chosen much shorter

than 1=J? and thus both Cij
z ðtÞ and Cij

’ðtÞ can be assumed
constant on the time scale of �. This estimate would then

give �max ffi ðnJmaxÞ1=2ð1� J2maxÞ1=4, which, as illustrated in
Fig. 3, exhibits a good overall agreement with the numerical
results for bipartite lattices over the entire range of Jmax.
In conclusion, we have presented a systematic study of

largest Lyapunov exponents �max for a very large variety of
classical spin systems. Our findings strongly suggest the
absence of integrable nearest-neighbor Hamiltonians for
the type of lattices considered except for the Ising case.
As far as the behavior of �max is concerned, a number
of universal features enumerated above as (ii)–(vi) are
observed. We have also analytically derived the scaling
of �max with the anisotropy of the Hamiltonian. The nu-
merical part of this work was performed at the bwGRiD
computing cluster at the University of Heidelberg.
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