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The scaling of friction with the contact size A and (in)commensurabilty of nanoscopic and mesoscopic crystals
on a regular substrate are investigated analytically for triangular nanocrystals on hexagonal substrates. The
crystals are assumed to be stiff, but not completely rigid. Commensurate and incommensurate configurations
are identified systematically. It is shown that three distinct friction branches coexist, an incommensurate one
that does not scale with the contact size (A0) and two commensurate ones which scale differently (with A1/2

and A) and are associated with various combinations of commensurate and incommensurate lattice parameters
and orientations. This coexistence is a direct consequence of the two-dimensional nature of the contact layer,
and such multiplicity exists in all geometries consisting of regular lattices. To demonstrate this, the procedure is
repeated for rectangular geometry. The scaling of irregularly shaped crystals is also considered, and again three
branches are found (A1/4,A3/4,A). Based on the scaling properties, a quantity is defined which can be used to
classify commensurability in infinite as well as finite contacts. Finally, the consequences for friction experiments
on gold nanocrystals on graphite are discussed.
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I. INTRODUCTION

Recent years have witnessed a surge of interest in under-
standing the microscopic origin of friction as a result of the
increased control in surface preparations and the development
of local probes like the atomic force microscopes (AFMs). One
of the goals of this research is to understand whether extremely
low friction can be obtained by an appropriate choice of the
sliding conditions. In particular, commensurability between
the sliding lattices is one of the elements that determine fric-
tion. For a purely incommensurate infinite contact, theoretical
arguments suggest that static friction should vanish.1,2 This
effect has been called superlubricity.3,4

Commensurability and incommensurability are defined in
terms of lattice parameters. However, specific orientations can
also lead to (mis)matches of lattices in contacts. Very low fric-
tion was found in experiments with finite contacts at very low
velocities to depend strongly on the orientation.5,6 Coexisting
states of very different friction have also been observed in the
sliding of antimony nanoparticles7,8 and have been attributed
to contamination or (in)commensurate interfaces. Meanwhile,
recent theoretical studies9,10 have shown that nanocrystals can
slide with constant orientation only for particular orientations.

This paper examines systematically theoretically the
(in)commensurability and friction of sliding nanocrystals
with a triangular lattice symmetry [such as Au (111)] on
a triangular or hexagonal substrate (such as graphite). Gold
nanocrystals sliding on graphite are a prototype system for
friction that is being investigated both experimentally11 and
computationally.12 In this work, the friction is investigated
analytically through the total potential energy of the contact
layer on the substrate. The potential energy corrugation plays
an essential role in the survival and appearance of stable
(in)commensurate sliding orientations,9 as well as the order
of magnitude of the friction. In the regime of low sliding
velocity and low temperature, which is the typical situation
in AFM experiments,13 the friction is of the order of �V π/l,

with l the substrate period and �V the corrugation of the total
potential energy of the interface.

The interaction between the surface and an atom of the
contact layer is modeled with a realistic static potential. The
scaling of the friction with contact size is determined, depend-
ing on the orientation, and conclusions are drawn from this
regarding commensurate and incommensurate orientations.
The calculations are repeated also for contacts between crystals
with rectangular lattice geometries. An illustration of the
systems is shown in Fig. 1.

In Sec. II the geometry of gold on graphite is introduced.
An expression for the potential energy is derived in Sec. III.
At first, rigid crystals are considered, followed by correction
terms for crystals with relatively stiff, but deformable latices.
In Sec. IV, the scaling of the friction is discussed at different
(in)commensurate orientations and orientations with different
scaling are identified and classified. It is found that for perfect
crystals there are three types of (in)commensurability and
consequently three possibilities for the scaling of the friction
with the size of the contact area A, namely A0,A1/2, and A.
Conditions for each are derived.

These three different scaling behaviors for the friction are
a direct consequence of the two-dimensional nature of the
contact layer and are thus possible in all geometries, not just
triangular. In the Appendix, the calculations are repeated for a
rectangular geometry to exemplify this.

The scaling of friction for imperfectly and irregularly
shaped nanocrystals is discussed in Sec. V. In Sec. VI, the im-
plications for experiments are discussed, and a method is pro-
posed for quantifying the commensurability of finite-size crys-
tal interfaces. Finally, conclusions are presented in Sec. VII.

II. GRAPHITE AND GOLD

The interaction between the graphite substrate and the gold
crystal are dominated by the bottom, contact layer of the gold
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FIG. 1. (Color online) An illustration of the systems under study.
A nanocrystal lies on a triangular or hexagonal substrate with a contact
layer that has triangular lattice symmetry. Systems with rectangular
lattice symmetry are discussed as an example in the Appendix.

crystal and the top layer of the graphite. Commensurability of
these two layers is not only controlled by the ratio of the lattice
parameters, but also by their relative orientation.

The surface of graphite has a hexagonal lattice of carbon
atoms with an interatomic distance of a = 1.42 Å. A two-
dimensional hexagonal potential for a gold atom at position r
on a graphite substrate can be written as

VAu(r) = −2

9
V0

3∑
l=1

cos

(
2π

α
el · r

)
, (1)

where el = cos[(l − 1)π/3]ex + sin[(l − 1)π/3]ey is the unit
vector in the direction (l − 1)π/3 with respect to the x axis,
and α = a 3

2 . Without any load force, the potential corrugation
of a single gold atom on graphite is denoted by V0 and is
around 50 meV.14 A load force can be accounted for with
a higher corrugation. With a negative V0, this potential can
also be used to describe a substrate with a triangular lattice.
While in general a substrate potential may not be sinusoidal,
it is always periodic and hence can be written as a sum of
sinusoidal potentials. The analysis described in this work can
also be applied to sums of different sinusoidal potentials. More
details of the geometry are shown in Fig. 2.
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FIG. 2. (Color online) Diagram of the hexagonal graphite sub-
strate lattice (left) and a trapezoidal gold crystal (right) with
definitions of the size parameters d,d ′, lattice spacings a,b,b′, shape
parameter γ , substrate lattice vector e1, orientation φ, and position
R�. The dark atoms shown complete the trapezoid crystal into a
triangular one. We use b′/b = β and α = 3

2 a. For gold, with the
reconstruction that has been observed in vacuum (Ref. 15), the
parameters for the lattice are b = 2.760 Å, b′ = 2.885 Å, β = 22/23,
γ = 0. In a perfectly triangular crystal, d = d ′, β = 1, γ = 0.

From the triangular shape of the nanocrystal found in
experiments,11 it can be deduced that the contact layer must
have similar triangular symmetry. As bulk gold has an fcc
lattice, it is reasonable to conclude that the contact layer must
be the (111) cleavage. In the bulk, the lattice parameter is
B ′ = 4.080 Å, and consequently the interatomic distance in
the (111) layer is B = 2.885 Å. However, the Au(111) surface
is known to show surface reconstruction under a wide range
of conditions.15 In vacuum, the reconstructed Au(111) surface
looks similar to the unreconstructed bulk (111) layers, but has
a superstructure with a unit cell of size 23B × √

3B and an
average compression in the (110) direction. Consequently, the
rotational symmetry of the contact layer is lost. In addition,
the surface gold atoms do not lie in a plane, but are shifted by
up to 0.15 Å.

As the interaction between the graphite substrate and the
Au atoms is weak compared to the interaction between the
Au atoms, the reconstruction of the contact layer in the Au-
graphite configuration is likely similar to that of Au(111) in
vacuum. In this work, we simply assume that the lattice is only
slightly distorted, with the atoms arranged in scalene triangles.
As the interaction between the graphite surface and the gold
atoms is weak, the shift of 0.15 Å orthogonal to the surface
does not lead to significant changes in the interactions. As the
results derived in this work can be generalized to any regular
lattice, they can be applied to any reconstructed surface.

In general, the nanocrystal can be flexible, and may be
deformed due to forces exerted by the substrate. In this
work, the crystal is at first assumed to be rigid, and then
corrections are made for the displacements of atoms with
respect to their equilibrium position. Elastic deformations can
be neglected,16–18 as the typical coherence length of gold,
about 1 μm, is much larger than the size of a crystal in friction
experiments.11

Young’s modulus, which for gold is EAu = 79 GPa, gives
the stress-strain response and can be used as an indication
of the displacement δr of a single atom with respect to the
equilibrium lattice positions. One may consider the force
exerted by the substrate on an atom at position r, FAu(r) to
work on a single unit cell of the contact layer, of diameter B.
The displacement of the atom can be estimated as

δr ∼ B
FAu(r)

B2EAu
. (2)

This leads to a typical displacement of a single gold atom in
the crystal of about 0.007 Å, corresponding to a difference
in potential energy two orders of magnitude smaller than the
corrugation. Though Young’s modulus is a bulk property, and
we are interested in the displacement of surface atoms, it
is sufficient for obtaining the order of magnitude. A similar
estimate for the order of magnitude of the displacement
of a surface atom can be obtained from the total number
of neighboring atoms and parameters used in molecular-
dynamics simulations with atomistic force fields, such as that
of Ref. 19. In the next section, for the total potential energy
of the contact layer, the contribution from the displacement
of surface atoms is neglected. In Sec. III B, corrections that
include the displacement of the atoms with respect to their
equilibrium positions are also made.
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III. POTENTIAL ENERGY LANDSCAPE

It has been shown that sliding crystals rotate to specific
orientations, which are stable and remain (nearly) constant for
all time.9,10 These orientations can be identified with periodic
orbits in the dynamics and obtained from the potential energy
landscape. They occur when the potential energy averaged over
a scan line and its corrugation simultaneously exhibit an ex-
tremum as a function of orientation. However, the incommen-
surate orientations typically have higher average energy than
the commensurate ones and can be destroyed by sufficiently
large thermal fluctuations, leading to commensurate sliding
and an increase of friction. In experiments of small graphite
flakes on graphite, incommensurate orientations were found
to decay.6 Larger crystals were found theoretically to rotate
more slowly, so that incommensurate orientations survive.
The sliding gold nanocrystals studied in the experiments by
Dietzel et al.11 are sufficiently large for this (with contact areas
between 103 and 105 nm2), though the smaller crystals studied
numerically by Guerra et al.,12 can rotate easily while sliding.
In order to determine the scaling of the friction, and hence
the commensurate orientations, as well as apply the theory of
Ref. 9, it is necessary to focus on the potential energy of the
contact layer on the substrate as a function of position and
relative orientation.

Let us calculate the total potential energy of a trapezoidal
crystal. The geometry of such as crystal is displayed in Fig. 2,
along with definitions of the diameters d and d ′, the interatomic
distances b and b′, the shape parameter γ , the orientation φ,
and the position of the center of smallest triangle that contains
the trapezoid, R�. First, we assume that the crystal is rigid and
then make a systematic correction for displacement of atoms
from their equilibrium position.

The total potential energy of the crystal at position R and
orientation φ on the substrate is dominated by the interaction of
the contact-layer atoms with the periodic substrate potential. It
can therefore be written as a sum over all atoms in the contact
layer,

Vtrap.,d,d ′,α,β,γ (R,φ) =
d ′∑

j=0

d−j∑
k=0

VAu(R� + rj,k), (3)

where rj,k are the positions of the atoms in the contact layer
relative to R�, the center of the contact layer.

A. Rigid crystal

If the crystal is rigid, the positions of the atoms can be
written as

rj,k = bR(φ) · (
1
2

√
3
(

1
3d − j

)
,

− 1
2β(d − j ) + βk + γ

(
1
3d − j

))
, (4)

with R(φ) the 2 × 2 matrix that performs a rotation over an
angle φ.

By substituting the substrate potential [Eq. (1)] and rewrit-
ing the cos in terms of imaginary exponentials, we find that
for a rigid crystal,

V
(0)

trap.,d,d ′,α,β,γ (R,φ) = −1

9
V0

3∑
l=1

Sd,d ′,α,β,γ (R�,φ,l), (5)

Sd,d ′,α,β,γ (R�,φ,l) =
d ′∑

j=0

d−j∑
k=0

[
exp

(
2πi

α
el · (R� + rj,k)

)

+ exp

(
−2πi

α
el · (R� + rj,k)

)]
. (6)

Due to the rotational symmetry of the substrate and of a
perfectly triangular crystal,

Sd,d ′,α,β,γ (R�,φ,l+1) =Sd,d ′,α,β,γ

(
R

(− 1
3π

) · R�,φ − 1
3π,l

)
,

(7)

Sd,d,α,1,0(R�,φ,l + 1) = Sd,d,α,1,0
(
R

(− 1
3π

) · R�,φ,l
)
. (8)

Consequently, for an irregular trapezoid, it suffices to deter-
mine Sd,d ′,α,β,γ (R�,φ,1). Finally, the sums in Eq. (6) can be
evaluated by making use of the relation

n∑
j=0

exp(i2cj ) = exp(icn)sin[c(n + 1)]/sin(c), (9)

with c any real number. One finds that

Sd,d ′,α,β,γ (R�,φ,1) =
∑
j=0,1

sin

{
πb

α

[
R� · e1

b
+ 1

2
(−1)j

(
2d − d ′ + 2

)
β sin φ + 1

3
(2d − 3d ′)γ sin φ + 1

6

√
3(2d − 3d ′) cos φ

]}

× sin
{

πb
α

(d ′ + 1)
[

1
2

√
3 cos φ + (

γ + 1
2 (−1)jβ

)
sin φ

]}
sin

{
πb
α

[
1
2

√
3 cos φ + (

γ + 1
2 (−1)jβ

)
sin φ

]}
sin

(
πb
α

(−1)jβ sin φ
) , (10)

V
(0)

trap.,d,d ′,α,β,γ (R,φ) = −1

9
V0

3∑
l=1

sin

[
πb

α

(
R� · el

b

)]
Sd,d ′,α,β,γ

(
−1

2
αel ,φ,l

)
−1

9
V0

3∑
l=1

cos

[
πb

α

(
R� · el

b

)]
Sd,d ′,α,β,γ (0,φ,l).

(11)

Note that the angle-dependent corrugation prefactor contains all the geometric dependence on size and orientation and does not
depend on the position R of the center of mass on the substrate. The total corrugation is

max
R

(V (0)) − min
R

(V (0)) = 1

3
V0

[
Sd,d ′,α,β,γ

(
−1

2
αe1,φ,1

)2

+ Sd,d ′,α,β,γ (0,φ,1)2

] 1
2
(

3

2
cos

ξ

3
+ 1

2

√
3 sin

|ξ |
3

)
, (12)

ξ = arctan

(
Sd,d ′,α,β,γ

(− 1
2αe1,φ,1

)
Sd,d ′,α,β,γ (0,φ,1)2

)
, (13)
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where maxR and minR are used to denote the value of the
maxima and minima of the potential, respectively.

The average potential energy over any scan line vanishes
for all scan lines not exactly orthogonal to one of the el . In this
case, the conditions for the existence of stable orientations of
Ref. 9 are met. As is also the case for rectangular lattices in
Ref. 10, the incommensurate stable orientations are distributed
evenly over the unit circle and their number grows linearly
with the diameter d. It should be noted that these results are
consistent with the numerical results for the distribution of
activation energies described in Ref. 20 for rigid crystals with
triangular symmetry on a square lattice. However, because
those results were obtained for relatively small clusters, the
authors could not distinguish the commensurate orientations
with larger corrugation.

B. Nonrigid crystal

In realistic nanocrystals, atoms of the contact layer are
displaced with respect to their equilibrium position, due to the
forces exerted on them by the substrate. From the arguments
presented in Sec. II, it is clear that this displacement is small
for the system studied in this work. However, as the contact
layer of typical nanocrystals contain many atoms, the energy
effect is not necessarily negligible compared to the low total
potential energy for incommensurate configurations.

To provide some insight into the effects of lattice deforma-
tions without making the calculations much more complicated,
it is assumed here that each atom couples only to its
equilibrium position. Within this mean-field approximation,
small displacements δr from the equilibrium position are due
to a force equal to

Fspring = κδr, (14)

where the spring constant κ can be estimated from Eq. (2) to
be

κ ∼ BEAu = 1.4 × 103 meV/Å
2
. (15)

Because typical sliding velocities in experiments are low,
we may limit ourselves to the quasistatic case, where all forces
on each atom sum to zero. The correction to the potential
energy consists of the reduction in potential energy due to the
displacement on the lattice, and the additional potential energy
stored in the spring. To leading order in the displacement,
we find a correction to the potential energy of the atom with
equilibrium position r of

�V
(1)

Au (r) = − 1

2κ
|FAu(r)|2, (16)

with FAu(r) = −∂VAu(r)/∂r the force exerted by the substrate
on an atom at position r.

By substituting Eq. (1), using the relation 2 sinX sinY =
cos(X − Y) − cos(X + Y), and using the properties of el , one

obtains

�VAu(r) = − 1

2κ

[
2

9
V0

3∑
l=1

2π

α
sin

(
2π

α
el · r

)
el

]2

(17)

= −4π2V 2
0

81κα2

3∑
l=1

[
1 − cos

(
4π

α
el · r

)

+ cos

(
2π

α
el · r

)
− cos

(
2
√

3 π

α
el+ 1

2
· r

)]
. (18)

This expression is of a form very similar to Eq. (1). The
approach used in Sec. III A to obtain the total potential energy
of a rigid crystal can be applied to this expression as well.
Hence, one obtains the first-order correction of

�V
(1)

trap.,d,d ′,α,β,γ (R,φ)

= π2V0

9κα2

[
2

9
V0 + V

(0)
trap.,d,d ′,α,β,γ (R,φ) − V

(0)
trap.,d,d ′,α/2,β,γ (R,φ)

−V
(0)

trap.,d,d ′,α/
√

3,β,γ
(R(π/6) · R,φ + π/6)

]
. (19)

Though the functional forms of the terms in this correction
are very similar to Eq. (11), the values of the parameters are
different. As is discussed in the next section, this allows the
first-order correction to become larger than the leading order
in some cases, despite the small prefactor.

Higher-order corrections and corrections for direct coupling
to the neighboring atoms in the contact layer could, in prin-
ciple, be obtained using the same approach. However, these
corrections would have to include the nonlinear response of
the lattice, as well as second-order derivatives of the potential
energy. This would lead to expressions similar in form to
Eq. (1), and therefore to additional terms similar to Eq. (19),
but with yet again different parameters and smaller prefacors.

IV. SCALING AND ORIENTATION

From the structure of the function S in Eq. (10), one can
derive important general geometrical and scaling properties.
From Eqs. (10), (11), and (19) it is clear that there are a number
of parameters which control the potential energy corrugation
of the surface which the nanocrystal is subjected to. For a
perfectly triangular crystal these are the diameters d, the ratio
of the lattice constants, b/α, and the orientation φ.

A. Diverging denominator

In Eq. (10), the numerator varies rapidly between −1 and
1, with φ, while the denominator provides a size-indepent
prefactor that can diverge for particular angles. This can be
seen in Figs. 3 and 4, where one of the angle-dependent
corrugation prefactors is plotted along with the function

fdenom.,α,β,γ (φ) = 1

9
V0

∣∣∣∣ sin

{
πb

α

[
1

2

√
3 cos φ +

(
γ + 1

2

)
β sin φ

]}
sin

(
πbβ

α
sin φ

)∣∣∣∣
−1

+ 1

9
V0

∣∣∣∣ sin

{
πb

α

[
1

2

√
3 cos φ +

(
γ − 1

2
β

)
sin φ

]}
sin

(
−πbβ

α
sin φ

)∣∣∣∣
−1

. (20)
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FIG. 3. The angle-dependent corrugation prefactor [Eq. (12)] for
a perfectly triangular nanocrystals on a hexagonal substrate with
d = 100,α = 1.354 (solid line), along with fdenom.,α (dotted line),
which does not depend on the diameter d . The ratio b/α ≈ 1.325. The
denominators control the typical size of the corrugation. Whenever
the denominator nearly diverges near the orientations given by
Eqs. (22) and (23), a peak appears. There, the interface is (partially)
commensurate.

This function gives an upper bound for the absolute value
of the corrugation due to a particular term. It can be used to
estimate the typical corrugation of any triangular or trapezoidal
crystal. At particular combinations of orientations φc. and
lattice parameter ratio b/α, one or both of the denominators
vanishes and fdenom.,α(φ) diverges. The numerator in Eq. (10)
vanishes as well, so that S itself does not diverge. As the
arguments of the trigonometric functions in the numerator
contain factors of d and d ′, the resulting contribution to S is
an order of d or d ′ higher than at other orientations.

There is some arbitrariness to the choice of numerator
and denominator, as both can be multiplied by any function.
This cannot, however, lead to additional factors of d. For
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FIG. 4. A logarithmic plot of a peak in the corrugation for a
perfectly triangular rigid nanocrystals on a hexagonal substrate with
d = 2000,α = 1.354 (thin solid line), and d = 500 (thick solid line),
along with fdenom.,α (dotted line). The denominators control the typical
size of the corrugation. In this case, the corrugation diverges with
1/(φ − φc.), but, very close to φc., it remains finite, because the
numerator vanishes as well.

determining the order of magnitude of the corrugation at any
orientation, fdenom.,α(φ) therefore suffices.

B. Classification of commensurability

The (in)commensurate configurations can be distinguished
and classified by the exponent C with which the corrugation
scales with the contact diameter. This order of the com-
mensurability can be obtained from the divergence of the
size-independent prefactor in the corrugation, which goes as
(φ − φc.)−C . That is, it is equal to the number of derivatives
(starting with the zeroth) with respect to φ of the denominators
in Eq. (10) that are equal to zero. The scaling of the friction
with the contact area can be directly related to the order of
commensurability through

Ffric. ∝ dC ∝ A
C
2 . (21)

For the commensurate orientations generated by the first-order
correction in Eq. (19) that do not coincide with commensurate
orientations of the leading order, the friction is a factor of order
V0/(ca) smaller.

For most parameter combinations and orientations the
contact is incommensurate with C = 0, the denominator does
not vanish at all, and both denominator and numerator are of
order 1. The corrugation of the nanocrystal on the substrate
does not scale with the size of the crystal. The sliding friction
consequently is of the order V0/a ∝ A0. It should be noted,
however, that without a load force, V0 for gold on graphite is
comparable to kBT at room temperature. Temperature effects
on the friction can therefore play a role as well in this regime,
reducing the friction further.

Commensurability order C = 1 can occur when one of the
two sin functions in the denominator in Eq. (10) vanishes for a
particular orientation φc.. For a rigid crystal, this occurs when
one of the following conditions is met:

b

α

[
1

2

√
3 cos φc. + γ sin φc. ± 1

2
β sin φc.

]
= p, (22)

bβ

α
sin φc. = p′, (23)

with p,p′ ∈ Z. If b/α is sufficiently large, that is, large
interatomic distance in the nanocrystal, solutions exist also for
p 	= 0. This implies that there exist nontrivial commensurate-
like orientations with high corrugation. At these orientations,
there is no obvious lining up of symmetry axes, or other source
of commensurability, as there is for the trivial solutions with
p = 0, but the corrugation and friction nevertheless behave in a
similar way. This is illustrated in Fig. 5, where the corrugation
is plotted for several values of b/α. Two commensurate
combinations of lattices are also shown, one trivial, and one
nontrivial. In the nontrivial one, no lining up is immediately
visible, yet the potential energy still scales with the diameter,
as it does for the trivial commensurate configuration. For bulk
Au and graphite, γ = 0, β = 1, b/α ≈ 1.354, and thus there
are commensurate orientations φc. ≈ 1

3qπ ± 0.216.
The first-order correction for lattice deformations [Eq. (19)]

produces additional commensurate orientations, which satisfy
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FIG. 5. (Color online) The corrugation (a) as a function of the
orientation for crystals with diameter d = 100 and various b/α and
two commensurate orientations with C = 1 for triangular crystals
with b/α = 1.5 and with (b) trivial φ = 0 and (c) nontrivial φ =
0.3175. Though the nontrivial commensurate configuration shown
in (b) does not have any obvious lining up of symmetry axes, it
nevertheless corresponds to a strong peak in the corrugation in (c).
For larger b/α, more nontrivial solutions of Eqs. (22) and (23) exist
and hence more orientations with large corrugations.

one of the conditions

b

α

[
1

2

√
3 cos φc. + γ sin φc. ± 1

2
β sin φc.

]
= 1

2
p, (24)

bβ

α
sin φc. = 1

2
p′, (25)

b

α

[
1

2

√
3 cos

(
φc. − 1

6
π

)
+ γ sin

(
φc. − 1

6
π

)

± 1

2
β sin

(
φc. − 1

6
π

)]
= 1

3

√
3p, (26)

bβ

α
sin

(
φc. − 1

6
π

)
= 1

3

√
3p′. (27)

These conditions contain additional factors of 1/2 and 1/
√

3
when compared to Eqs. (22) and (23), due to the appearance
of such factors in Eq. (19).

Equations (24) through (27) yield a set of additional
commensurate orientations that are different from the ones
produced by a rigid crystal. In Fig. 6, the corrugation in the
total potential energy, consisting of the rigid-crystal term and
the first-order correction for lattice deformations, is shown for
a very large perfectly triangular crystal. Peaks corresponding
to both the nontrivial commensurate configurations and the
additional commensurate configurations associated with lat-
tice deformations are clearly visible.

Finally, C = 2 can occur only if the two sin functions in
the denominators have coinciding zeros. This happens only
for special ratios of the lattice parameters and corresponds
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FIG. 6. (Color online) The corrugation (a) as a function of the
orientation for nonrigid triangular crystals with diameter d = 1000
and 2V0/(9κα2) = 0.003 (the typical value for Au), for triangular
crystals with b/α = 5/4, and lattices for commensurate orientations
with C = 1, for (b) a rigid crystal φ = 0, and (c) a nonrigid crystal at
φ = π/6. The ratio of lattices parameters b/α = 5/4 is incommensu-
rate. The short lines in (b) indicate the direction of the displacement of
the atoms as a result of the substrate potential, and their length is pro-
portional to its magnitude. The peaks marked “rigid crystal” appear
already when the crystal is assumed to be rigid and satisfy Eqs. (22)
and (23). The lower peaks that appear due to lattice deformations are
marked with “first order” and are the solutions of Eqs. (24)–(27).

to commensurability in two parameters. The conditions of
Eqs. (22) and (23) for the orientation can only be satisfied
simultaneously if the lattice parameters are related by(

b

α

)2

=
(

p′

β

)2

+ 4

3

[
p − p′

(
γ

β
± 1

2

)]2

, (28)

with p,p′ ∈ Z. From the first-order correction in Eq. (19)
additional C = 2 commensurate combinations of parameters
are found,

4

(
b

α

)2

=
(

p′

β

)2

+ 4

3

[
p − p′

(
γ

β
± 1

2

)]2

, (29)

3

(
b

α

)2

=
(

p′

β

)2

+ 4

3

[
p − p′

(
γ

β
± 1

2

)]2

. (30)

Equation (29) corresponds to commensurate configurations at
angles satisfying Eqs. (24) and (25), while Eq. (30) corre-
sponds to commensurate configurations at angles satisfying
Eqs. (26) and (27).

A similar structure appears also in the expressions for
rectangular nanocrystals on rectangular lattices shown in the
Appendix and also treated in Ref. 10. This is due to the
fact that any sum over atoms arranged in a regular way in
nanocrystal, subjected to a periodic potential, can be written
in terms of double sums of the form of Eq. (9). Hence, two
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sin functions will always appear in the denominator, and
similar conditions exist for which the denominator vanishes.
The system studied in Ref. 10, W on NaF, however, does
not have a sufficiently high ratio of lattice parameters to
produce nontrivial commensurate orientations. Consequently,
no nontrivial commensurate orientations were observed there.

C. Preferred sliding directions

In experiments of friction of nanocrystals, the crystals are
either pulled along a particular direction5 or pushed.11,21 When
crystals are pulled, the direction of their motion is enforced
externally. When the crystals are pushed, they may move
in a direction not precisely along the force, following some
preferred sliding direction. A comparison between Eqs. (1)
and (11) shows that the potential energy of a nanocrystal
depends on the position in a similar way to that of a single
atom. Consequently, the preferred sliding directions are the
same as for a single atom, along vectors orthogonal to el .
The nontrivial commensurate orientations do not lead to
any nontrivial preferred sliding directions. In addition, the
activation energy is always equal to the same fraction of the
corrugation. However, the first-order corrections produce a
potential form which is rotated by π/6. For some parameter
combinations, this may lead to additional preferred sliding
directions parallel to el .

D. Less rigid crystals and the Frenkel-Kontorova model

It is interesting to compare the model used here and the
results to what is known about the Frenkel-Kontorova (FK)
model22 in one and two dimensions. The FK model consists
of a chain or sheet of particles, coupled to one another and a
(quasi-)periodic substrate. The coupling between the particles
may be weak or strong compared to the substrate, leading
to different types of behavior. When the substrate is weak
by comparison, for incommensurate lattice parameters, the
interface can slide without friction. In the one-dimensional FK
model, commensurate configurations occur for rational ratios
of the lattice parameters.1 For the nearly rigid case, in the FK
model, there is a cascade of commensurate configurations with
decreasing friction.

For weak coupling between monomers in the chain, there is
a breaking of analyticity,1 which results in any ratio of lattice
parameters yielding nonvanishing friction for infinite contacts.
Other effects also start playing a role that do not affect stiff
crystals, for instance nucleation of incommensurate domains
within a large sheet.23,24

In the system considered here a similar cascade would ap-
pear if more higher-order corrections for lattice deformations
were included. More commensurate orientations with increas-
ingly small friction would be found. Each subsequent term in
the potential energy would, however, be multiplied by a small
prefactor, and so each additional commensurate orientation
would correspond to an increasingly small corrugation.

The one-dimensional FK model has only two length
scales, and therefore only one parameter which controls
commensurability. The system studied in this work has two
parameters which control commensurability, similar to the
Frenkel-Kontorova (FK) model in two dimensions and the
quasiperiodic one-dimensional FK model.25 Unlike the model

described here, the quasiperiodic FK model cannot have
coexistence of commensurate states with different order of
commensurability. The two-dimensional FK model, however,
is already too complex to be analytically tractable. Hence, most
results dealing with extended two-dimensional deformable
interfaces are numerical (see, for instance, Refs. 26–28).
Recently, though, experiments were performed that model
atoms as colloids in suspensions, and reproduce the FK model
closely.29

V. SCALING FOR IMPERFECTLY SHAPED CRYSTALS

In real-world, experimental conditions, crystalline particles
are almost never perfectly triangular, or even trapezoidal. At
the very least, even if the crystal lattice is intact, some atoms
may be missing and the corners may be rounded.

Any shape of particle can be written as a sum (including
negative terms, if necessary) of regularly shaped particles. The
number of terms in this sum can be estimated from the number
of step edges M on the circumference of the contact layer.
Each term contributes an amount to the total potential energy
of the order of V0d

C . Because the total potential energy at a
particular orientation varies rapidly with the size of the particle
[see Eq. (10)], one may assume a random phase for every term.
The total corrugation for an irregular particle is therefore of
the order of V0d

C
√

M , but can never grow faster than ∝d2.
If the shape of the particle is simply scaled, then the number
of step edges increases with M ∝ d. Such crystals, therefore,
have friction scaling similarly to Eq. (21) with

Ffric, ∼ 4π

3a
V0d

min(C+1/2,2) ∝ Amin((2C+1)/4,1), (31)

that is, with exponents 1/4, 3/4, and 1.
The effects of lattice distortions at the edge of the contact

layer can be included by summing up in a similar way over a
small number of contact layers with different sizes to account
for the different interactions at the edge of the crystal. There-
fore, the scaling with the crystal size and the (in)commensurate
configurations is not affected by the edges. It should also be
noted that, regardless of their shape, the friction of amorphous
crystals always scales ∝d ∝ A1/2 (Ref. 30).

VI. DISCUSSION

A. Three friction branches

The three different types of (in)commensurability, quan-
tified with the values of C = 0,1,2, can occur at different
orientations in a single interface already for rigid crystals.
In Fig. 7, such a case is shown. The trivial commensurate
orientations have C = 1, corrugation scaling with d, and are
the result of a single vanishing denominator in Eq. (10).
The nontrivial commensurate orientations are the result of
both denominators vanishing at the same orientation, and
thus correspond C = 2 and corrugation scaling with d2. The
corresponding orientations around π/3q + π/6 are particu-
larly interesting, as these are usually assumed to be strongly
incommensurate and are indeed so for most combinations of
lattice parameters.

For some lattice parameters, the rigid crystal has only two
friction branches, but a third branch appears when lattice
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FIG. 7. (Color online) The corrugation (a) as a function of the
orientation for b/α = 2 and b/α = 1.5 for a perfectly triangular
nanocrystal with d = 50 and two commensurate orientations for
b/α = 2, (b) φ = 0,C = 1, and (c) φ = π/6,C = 2. The three
different friction branches occur in one interface here. For the case of
φ = π/6, the corrugation is of the order d2, while for φ = 0 it is of
order d , and at most other orientations the typical corrugation is not
dependent on d .

deformations are taken into account. This is shown for a
perfectly triangular nonrigid nanocrystal with b/α = 4/3
in Fig. 8. The first-order peaks appear at the solutions
of Eqs. (24)–(27) and are generated by both rigid-crystal
contributions and first-order corrections. However, for this
combination of lattice parameters, Eqs. (26) and (27) are
satisfied for p = 2, p′ = −2,0,2. As a result, C = 2 is
possible for the first-order correction terms, but not for the
zeroth order. Consequently, the small prefactor for the stiffness
of the crystal is multiplied by a factor that can be as large as d.

For sufficiently small crystals with nearly commensurate
lattice parameters, the commensurate orientation behaves as if
C = 2, and its friction grows as d2. For gold on graphite, with
b/α ≈ 1.354 close to 4/3, the corrections can easily become as
large as the leading-order terms. It should, however, be noted
that, as this effect is very sensitive to the lattice parameters,
the surface reconstruction, however minimal, can still enhance
or decrease the effect strongly. The surface construction of
Au(111) on graphite may indeed itself be affected by the near
match in lattice parameters, possibly leading to an even closer
match of the reconstructed surface. The FK model can be used
to understand surface reconstructions,31 and the calculations
of this paper can similarly be applied to get a handle on surface
reconstructions in an interface.

B. Order of commensurability

The order of commensurability, as it is defined in this
work, is a general quantity that can be used to characterize
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FIG. 8. (Color online) The corrugation (a) in the potential energy
as a function of the orientation and commensurate lattices at
(b) φ = 0,C = 1 and (c) φ = π/6,C = 2 for a perfectly triangular
nanocrystal with d = 1000 that is not rigid with 2V0/(9κα2) = 0.003
and b/α = 4/3, which is a commensurate configuration for the
first-order corrections, This plot is similar to Fig. 6. The additional
peaks that appear because the crystal is not rigid are the solutions
of Eqs. (24)–(27). The orientation shown in (c) is usually strongly
incommensurate, even though the symmetry axes area clearly lined
up, because the potential energy of the interface is not strongly
corrugated. Due to the matching lattice parameters, the first-order
corrections contribute O(d2) to the corrugation. For rigid crystals
this relative orientation is incommensurate for almost all values of
b/α. Even for 4/3, which looks commensurate, a rigid crystal does
not have a corrugation that increases with the size.

commensurability of crystalline interfaces. The sin functions
in the denominator in Eq. (10) originate from summing over
a line of regularly spaced atoms, which must always produce
factors of the type shown in Eq. (9). Such sums occur in the
potential energy of any rigid regular crystalline contact layer.
Thus, the analysis described here in terms of its derivatives can
be used to identify and classify commensurate configurations
for any regular nanocrystal on any regular substrate. In
the Appendix, the expression for the potential energy of a
rectangular crystal on a rectangular substrate is worked out as
an example.

For a two-dimensional contact area, it is not possible to
have C larger than 2, because the total potential energy
can never grow faster than linearly with the contact area.
Correspondingly, in one dimension, C cannot exceed unity.

As illustrated by the case of gold on graphite, configurations
close to commensurate still show some of the commensurate
behavior for finite-size crystals. It is therefore worthwhile
to consider a quantity similar to C, a finite-size order of
commensurability,

C =
2 ln

[
maxR

(
V
V0

) − minR
(

V
V0

)]
ln N

. (32)
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For simplicity, or if V is not well known, a simple periodic
sinusoidal function can be used in place of V . In the limit of
N → ∞, C converges to the order of commensurability C.
As it is impossible to define lattice orientation for a single
atom, it diverges for d = 0. For finite-size crystals, it can be
used as a measure of the commensurability of the contact. In
Ref. 24 another measure for commensurability was defined for
determining to what extent weakly coupled atoms line up with
the substrate in an incommensurate contact. This measure,
however, is not suitable for determining the commensurability
of two (nearly) rigid lattices.

VII. CONCLUSIONS

In this work, the (in)commensurability of finite-size crys-
talline interfaces was investigated, particularly for crystals
with triangular symmetry on triangular or hexagonal substrates
such as gold on graphite. The crystals were assumed to be
nearly rigid, with the stiffness being used as an expansion
parameter. A simple method was developed for determining
the commensurate configurations, through quantifying the
commensurability by the scaling of the potential corrugation
of the crystal with the diameter of the contact area at constant
orientation and lattice parameters. This method can be applied
not only to the two geometries discussed in this paper
(triangular/hexagonal and rectangular/rectangular), but to any
regular lattice on a regular substrate.

It was found that, due to the two-dimensional nature
of the contact layer, and associated two parameters for
commensurability (ratio of lattice parameters and relative
orientation), two different types of commensurate contacts
can exist for the same materials. If the relative orientation is
commensurate, but the lattice parameters are not, the potential
corrugation scales with the diameter of the contact area,
while if both are commensurate, it scales with the contact
area. Consequently, for some combinations of materials three
different friction branches can appear for the same crystal
shape and materials, scaling with the contact area as A0,A1/2,
and A1 for perfect crystals [see Eq. (21)]. When the crystals
have irregular shapes, the corrugation and friction scale with
A1/4,A3/4,A1 [see Eq. (31)].

Nontrivial commensurate configurations were identified
in particular for the triangular on triangular on hexagonal

geometry. These commensurate orientations exist if the lattice
parameter the nanocrystal is sufficiently high compared to the
lattice parameter of the substrate. They are also a direct result
of the two-dimensional nature of the contact layer.

It was found that lattice deformations produce a number
of additional commensurate configurations that would be
incommensurate for a rigid crystal. Interestingly, the prototype
geometry of gold on graphite is very close to the parameters
which produce such a friction multiplicity. It might therefore
be possible to detect all three friction branches with different
commensurability in friction experiments of gold nanocrystal
on graphite, as well as nontrivial commensurate angles.
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APPENDIX: RECTANGULAR LATTICES

The identification and classification of commensurate
(-like) configurations described in this paper can easily be
repeated for the general rectangular lattices, as described, for
instance, in Ref. 10. A general potential energy of a single
atom, VA is given by

VA(X,Y ) = V2 + V3

2
+ V1 − V2 + V3

4
cos

2πX

a1

+ V1 + V2 − V3

4
cos

2πY

a2
+ V1 − V2 − V3

4

× cos
2πX

a1
cos

2πY

a2
, (A1)

where the geometry and associated parameters are defined in
Fig. 9.

The total potential energy of a rigid rectangular nanocrystal
on the substrate can be calculated using the same approach as
described in Sec. III and is found to be

V (R,φ) = mn
V2 + V3

2
+ V2 + V3 + V4, (A2)

V2 = V1 − V2 + V3

4

sin
(
π (m + 1) b1

a1
cos φ

)
sin

(
π (n + 1) b2

a1
sin φ

)
sin

(
π b1

a1
cos φ

)
sin

(
π b2

a1
sin φ

) cos
2πX

a1
, (A3)

V3 = V1 − V3 + V2

4

sin
(
π (m + 1) b1

a2
sin φ

)
sin

(
π (n + 1) b2

a2
cos φ

)
sin

(
π b1

a2
sin φ

)
sin

(
π b2

a2
cos φ

) cos
2πY

a2
, (A4)

V4 = V1 − V2 − V3

8

∑
j=0,1

cos

[
2π

(
X

a1
+ (−1)j

Y

a2

)]

× sin
[
π (m + 1)

(
b1
a1

cos φ + (−1)j b1
a2

sin φ
)]

sin
[
π (n + 1)

(
b2
a1

sin φ − (−1)j b2
a2

cos φ
)]

sin
[
π

(
b1
a1

cos φ + (−1)j b1
a2

sin φ
)]

sin
[
π

(
b2
a1

sin φ − (−1)j b2
a2

cos φ
)] , (A5)
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1V=V

2V=V

3V=V

V= 0a2

a1

b2

b n2

b1

b m1

y

x

φ

FIG. 9. A top view of a general rectangular lattice (open circles)
and contact layer (solid circles) with mismatch angle φ, lattice pa-
rameters a1,a2,b1,b2, contact layer size m,n, and the potential energy
of a contact-layer atom on the substrate. If a contact-layer atom lies
on top of a substrate atom, its potential energy is V1. If it lies directly
between an atom and its nearest neighbor in the x or y direction, it
has potential energy V2 or V3, respectively. If it lies in the center of
a rectangle, at equal distance from four substrate atoms, without loss
of generality, we may set the potential energy to 0. The origin of the
coordinate system is chosen to lie on top of a substrate atom.

where V2,V3,V4 originate from the second, third, and fourth
term on the right-hand side of Eq. (A1). Similarly, the
higher-order corrections for lattice deformations can also be
obtained along similar lines as described in Sec. III B. This
yields terms with higher perdiodicity, that is, a term obtained
from the derivative of V2 which looks very similar, except that
a1 is replaced by 2a1. Similarly, there is a term derived from
V3 with a2 replaced by 2a2, and two terms from V4 with both
a1 and a2 replaced.

From these expressions it is easy to obtain the conditions
for vanishing denominators, and thus for C = 0,1,2. The three
terms V2,V3,V4 each produce a different set of conditions
for commensurability at different angles and ratios of lattice
parameters. For V2, one finds that C = 1 commensurability
occurs if one of the following conditions is met,

b1

a1
cos φc. = p, (A6)

b2

a1
sin φc. = p′, (A7)

for some p,p′ ∈ Z. Both of these conditions can be met
simultaneously, leading to C = 2 commensurability, if(

a1p

b1

)2

+
(

a1p
′

b2

)2

= 1. (A8)

For V3, one finds

b2

a2
cos φc. = p, (A9)

b1

a2
sin φc. = p′. (A10)

Commensurability with C = 2 occurs if(
a2p

b2

)2

+
(

a2p
′

b1

)2

= 1. (A11)

Finally, for V4, one finds the conditions for C = 1,

b1

a1
cos φc. + (−1)j

b1

a2
sin φc. = p, (A12)

b2

a1
sin φc. − (−1)j

b2

a2
cos φc. = p′, (A13)

and for C = 2, the lattice parameters must satisfy both of these
equations at the same time.

The first-order correction for stiff, but not rigid, crystals
adds additional commensurate orientations, which can be
found by performing the replacements of a1 and a2 described
above.

As each of V2,V3,V4 has a different prefactor that depends
on the energy barriers of the potential, the different terms
do not, in general, cancel each other out. It is interesting to
note that often for square lattices it is assumed that V2 =
V3 = V1/2. In this case, V4 vanishes and the commensurate
configurations associated with it disappear, leading to lower
friction.
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