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New expressions for the viscosity of liquid mixtures, consisting of chain-like molecules, are derived
by means of Enskog-type analysis. The molecules of the fluid are modelled as chains of equally sized,
tangentially joined, and rigid spheres. It is assumed that the collision dynamics in such a fluid can
be approximated by instantaneous collisions. We determine the molecular size parameters from the
viscosity of each pure species and show how the different effective parameters can be evaluated by ex-
tending the Vesovic-Wakeham (VW) method. We propose and implement a number of thermodynam-
ically consistent mixing rules, taking advantage of SAFT-type analysis, in order to develop the VW
method for chain molecules. The predictions of the VW-chain model have been compared in the first
instance with experimental viscosity data for octane-dodecane and methane-decane mixtures, thus,
illustrating that the resulting VW–chain model is capable of accurately representing the viscosity of
real liquid mixtures. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3685605]

I. INTRODUCTION

Understanding the relationship between the macroscopic
transport properties of fluids and the interactions among
individual molecules is the ultimate goal of kinetic theory.
The last decade has witnessed great advances in our ability to
calculate the transport properties of fluids directly from inter-
molecular forces.1–10 Such calculations do not only improve
our insight into the dominant microscopic processes, but also
allow us to develop more accurate and reliable methods for
the prediction of transport properties. Although it is essential
to validate such methods against a bank of high-quality
experimental data, the reliance purely on experimental data
and empirical correlations based on them is not sufficient,
especially as there is an urgent need to facilitate a reliable
prediction of the viscosity of liquid mixtures over wide
ranges of temperature, pressure and composition.

At present, there is no rigorous kinetic theory that allows
for the calculation of the viscosity of a dense fluid from a
realistic intermolecular potential. The lack of a general so-
lution of the formal Boltzmann integro-differential equation
is still a fundamental unresolved problem. So far the only
tractable solutions have been based on simplifying the in-
termolecular interaction by assuming that molecules in the
fluid interact as hard spheres and that molecular collisions are
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uncorrelated. For such a system it is possible, through
Enskog’s analysis,11, 12 to derive a relationship between
the viscosity of the fluid and molecular parameters. The
Enskog equation, though approximate in nature, has neverthe-
less provided a useful theoretical basis for both understanding
and predicting the viscosity of fluids.13, 14 Notwithstanding
the recent advances in molecular dynamics3–6, 10 and density-
fluctuation theory15, 16 all indications are that it will remain a
cornerstone for the development of viscosity models based on
kinetic theory.

Recently, Enskog’s analysis has been extended to incor-
porate molecular shape (size asymmetry) in the expressions
for the self-diffusion coefficient17–19 and the viscosity.20

Molecules were modelled as chains formed from equally
sized hard spheres. Chain models provide a very useful
link, at the molecular level, with the Wertheim TPT1
(Refs. 21–23) and statistical associating fluid theory (SAFT)
(Ref. 24 and 25) that has proved to be very successful in
describing the thermodynamic properties of a wide variety of
fluids and fluid mixtures. In principle, representing molecules
as chains provides a further degree of realism and should
allow for a more accurate description of the viscosity of
the fluid. However, the resulting viscosity model is still
based on Enskog-type collision dynamics and the postulates
of instantaneous collisions and uncorrelated molecular
motion.12 It therefore suffers from the same deficiencies
as the original hard-sphere (HS) model. This renders it
unsuitable for a priori predictions of viscosity or any other
transport properties. For the original hard-sphere model
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this can be circumvented by using effective hard-sphere
diameters that are weakly temperature dependent.13, 14 A
proper choice of the effective diameter is paramount for
success in representing the viscosity of the fluid. For fluid
mixtures, the problem of choosing the appropriate effective
diameters is compounded by the presence of more than
one species. In order to address this problem, Vesovic
and Wakeham (VW) (Ref. 26) proposed that the effective
parameters for a mixture are obtained from the viscosity of
pure species. This choice of effective parameters is at the
heart of the development of the VW method26, 27 that can
be used to predict accurately the viscosity of a variety of
different mixtures, including natural gas,28 refrigerant,29 and
supercritical fluid mixtures.26, 27 The accuracy can be retained
when predicting the viscosity of liquid mixtures27, 29 provid-
ing the systems contain molecules of similar molecular mass
and size, thus allowing for a representation of each molecule
by an effective hard sphere. If the molecules are different
in size the hard-sphere representation is no longer adequate
and a chain representation becomes more appropriate, if the
accuracy is to be retained.

In our current work we first present expressions for the
viscosity of liquid mixtures consisting of chain-like molecules
that are derived with an Enskog-type analysis. We then show
how the different effective parameters can be evaluated by
extending the VW method. Finally, we illustrate through
two examples that the resulting VW–chain model is capa-
ble of accurately representing the viscosity of real liquid
mixtures.

The development of the VW-chain model is primarily
driven by the needs of the petroleum industry, where the
knowledge of oil viscosity is essential for optimal exploita-
tion of oil reservoirs. Reservoir fluids are complex mixtures
consisting of a large number of hydrocarbons, predominantly
chain molecules. In order to develop accurate and reliable pre-
dictions of viscosity of such mixtures it is essential to take a
proper account of the shape of the molecules making up the
mixture.

II. MODEL AND THEORY

In this section, we present an expression for the viscos-
ity of a liquid mixture that consists of molecules represented
as chains of hard spheres. The new expression is derived by
combining the Enskog-like analysis for hard-spheres11, 12 and
our recent work20 on chain molecules.

A. The viscosity of a pure chain-fluid

A hard-sphere fluid consists of spheres of diameter σ

that interact only on contact.30, 31 If we assume that the colli-
sions between the hard spheres are uncorrelated (i.e., molec-
ular chaos) then the shear viscosity, η, of such a fluid can be
described with Enskog’s expression:12

η = η(0)

[
1

χ
+ αρ + 1

β
α2ρ2χ

]
, (1)

where ρ is the molar density, η (0) is the viscosity in the limit
of zero density, and β is a constant equal to (1/4 + 3/π )−1.

The quantity χ is the radial distribution function at contact,
while α is a parameter proportional to the excluded volume
per molecule, Vexcl,

α = 8

15
NAπσ 3 = 2

5
NAVexcl, (2)

where NA is Avogadro’s constant.
Considerable effort has been made to extend the hard-

sphere model to fluids of non-spherical molecules. One way
of including the non-sphericity is to model the molecules as
tangentially bonded chains consisting of equally-sized, hard,
spherical segments. Such a representation of real fluids has
been very successful for the description of thermodynamic
properties and has recently been extended by ourselves20 to
treat the system’s viscosity. With this type of approach, the
viscosity of a fluid consisting of N chains, each made up of m
segments, can be approximated in the dense region by that of
a fluid consisting of mN hard-spheres. We refer to this fluid
as a segment fluid. In such a fluid, the collision dynamics is
governed principally by collisions between segments and one
can make use of Enskog’s approach. However, the collision
rate is still affected by the neighbouring segments in the chain,
and the resulting viscosity expression,

η = η̃(0)

[
1

χ̃
+ α̃ρ̃ + 1

β
α̃2ρ̃2χ̃

]
, (3)

now involves quantities defined on a per segment basis, indi-
cated here by the tilde. Unlike in Ref. 20, in order to avoid
confusion here between the usual symbol for viscosity in the
zero-density limit, η(0), and the corresponding parameter in
the segment fluid, η̃(0), a tilde is used to indicate a quan-
tity defined for segments. The segment density ρ̃ is given by
ρ̃ = ρm, while α̃ is a parameter proportional to the excluded
volume of a segment in the presence of another. As the seg-
ments in the same chain screen each other from collisions, the
excluded volume of each segment still corresponds to the ex-
cluded volume of a chain.20 Hence, the parameter α̃ can be
approximated as

α̃

α̃segment

= 1 + 3

2
(m − 1) + 3

8
(m − 1)2, (4)

where α̃segment is the excluded volume of the free segment,
4πσ 3/3.

The zero-density viscosity of the segments η̃(0) is related
to the zero-density viscosity of the fluid by the expression,20

η̃(0) = η(0)χ̃ (0) = η(0)

(
1 − 5

8

(
m − 1

m

))
. (5)

We refer the reader to Ref. 20 for the details of the derivation
of Eqs. (4) and (5), but also point out that Eq. (4) is a well-
known result by Onsanger32 for the excluded volume of hard
spherocylinders, while Eq. (5) is consistent with the correla-
tion hole effect.33

B. The viscosity of chain-fluid mixture

In the present paper, we extend the Enskog-Thorne
approach12, 34 for evaluating the viscosity of mixtures of hard
spheres to mixtures where the molecules are represented as
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chains made up of hard, spherical segments. We consider the
molecules of component i as chains consisting of mi segments
with a mass given by M̃i = Mi/mi , where Mi is the molecular
mass.

We are primarily interested in developing a model that
allows for the prediction of the viscosity of liquid mixtures.
Hence we constrain both the model and the discussion to
liquid-like densities. In the dense fluid, the collision rate is
high and in general the mean-free path between the collisions
is smaller than the size of the segments. It is thus reasonable
to assume that a particular segment will undergo a number
of collisions before the effects of the initial collision are felt
further down the chain. We therefore postulate that, at liquid-
like densities, as far as the collision dynamics is concerned,
a fluid consisting of chain molecules can be described as
an analogous fluid consisting of unbound or weakly-bound
segments. The viscosity of such a mixture consisting of chain
molecules can then be obtained by following Enskog-Thorne
approach and is given by:

η = K̃mix −

∣∣∣∣∣∣∣∣∣∣∣∣

H̃11 . . . H̃1N Ỹ1

...
. . .

...
...

H̃N1 . . . H̃NN ỸN

Ỹ1 . . . ỸN 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H̃11 . . . H̃1N

...
. . .

...

H̃N1 . . . H̃NN

∣∣∣∣∣∣∣∣∣

, (6)

K̃mix = 3ρ̃2

π

∑
i,j

x̃i x̃j χ̃ij α̃
2
ij η̃

(0)
ij , (7)

Ỹi = x̃i

⎡
⎣1 + ρ̃

∑
j

M̃j

M̃i + M̃j

x̃j α̃ij χ̃ij

⎤
⎦, (8)

H̃ij = −x̃i x̃j χ̃ij

2A∗
ij η̃

(0)
ij

M̃iM̃j

(M̃i + M̃j )2

[
20

3
− 4A∗

ij

]
, (9)

H̃ii = x̃2
i

χ̃ii

η̃
(0)
i

+
∑
j �=i

x̃i x̃j χ̃ij

2A∗
ij η̃

(0)
ij

M̃iM̃j

(M̃i + M̃j )2

[
20

3
+ 4

M̃j

M̃i

A∗
ij

]
,

(10)

where ρ̃ = (
∑

i ximi)ρ is the segment density, xi is the mole
fraction of component i, and x̃i = ximi/(

∑
j xjmj ) is the

segment fraction. The quantities η̃
(0)
ij and A∗

ij are the segment
interaction viscosity and ratio of collision integrals,35, 36

respectively, for the i-j pair in the limit of zero density. The
parameter α̃ij is the excluded volume of a segment of a chain
of species i in the presence of a segment of a chain of species
j while χ̃ij represents the segment-segment radial distribution
function at contact for the species i and j in the presence
of all other species in the mixture. In Sec. II C we examine
how to obtain the relevant pure species properties, in order to

combine them using mixing rules discussed in the subsequent
Sec. II D.

C. The VW method for chain molecules

In principle, knowledge of the excluded volume and the
radial distribution function at contact, both of which can be
obtained from thermodynamic considerations, together with
the pure component viscosities in the limit of zero density,
would be sufficient to evaluate the viscosity of any pure fluid
or fluid mixture. However, if Enskog’s theory is used in its
original form then generally the predicted viscosity will be
much higher than that observed experimentally. There are
number of ways of modifying the Enskog expressions in order
to predict the behaviour of real fluids.14 In our current work
we focus on the solution successfully used as part of the VW
method26–29 and extend the VW method to mixtures modelled
as chains formed from hard segments.

The crux of VW method is to obtain the effective radial
distribution function at contact from the experimentally
determined viscosity of each pure species, thus ensuring that,
in the limit of each pure species, viscosity of the mixture
tends to a correct value. This is achieved by inverting Eq. (3)
in quadratic form

χ̃±
i = β

2ρ̃i α̃i

⎡
⎢⎣

(
η

ρ̃i α̃i η̃
(0)
i

− 1

)
±

√√√√(
η

ρ̃i α̃i η̃
(0)
i

− 1

)2

− 4

β

⎤
⎥⎦.

(11)

To ensure realistic physical behaviour, it is necessary to
switch from the χ̃−

i branch to the χ̃+
i branch of the solution

at some particular density, ρ̃∗
i = miρ

∗
i , at which the two roots

are equal. This “switch-over density” can be obtained37 from
the solution of (

∂ηi

∂ρ

)
= η∗

i

ρ∗
i

. (12)

The use of Eq. (12) ensures a unique value of parameter α̃i ,
namely,

α̃i = η∗
i

ρ̃∗
i η̃

(0)
i

(
1 + 2√

β

) . (13)

It is important to stress that although α̃i and χ̃i determined
in this fashion are unique, they are effective parameters.
In the process of using them to reproduce the viscosity
of pure species, the link between the two, in terms of the
hard-sphere diameter, has been broken. What this confirms
is that Enskog’s expression, Eq. (1), does not adequately
describe the viscosity of a real fluid, even if we allow the
hard-sphere diameter to become an effective parameter
dependent on temperature. There is no reason to believe
that a single effective diameter can correctly account for
the simplifications to both the dynamics and the geometry
of the molecular interactions that Enskog introduced. In
essence the VW method postulates that in order to reproduce
the experimental viscosity by means of a hard-sphere fluid
one needs to use one effective size of the molecule for the
excluded volume and another for the collisional dynamics.
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Hence, we differentiate between the two diameters, σ̃α,i and
σ̃χ,i , using the subscript α to indicate that it was obtained
from the parameter α by means of Eq. (13) and the subscript
χ to indicate that it has been obtained from the radial distri-
bution function at contact, Eq. (11). These effective diameters
are distinguished further by the subscript “i” to indicate that
they can take a different value for different species.

In order to be able to use Eqs. (6)–(10) to calculate
the viscosity of a mixture, we need to relate the proper-
ties of the pure species segments to those for the i-j binary
interaction.

D. Estimating the mixture interaction parameters

1. Estimating the effective mutual excluded
volume, α̃ij

It is important to stress that the mutual excluded volume
of a segment of a chain of species i in the presence of a seg-
ment of a chain of species j is different to the excluded volume
of two free segments. The excluded volume of two segments,
belonging to two chains, is in fact equal to the excluded vol-
ume of the two chains. The chain excluded volume can be
approximated by the mutual excluded volume of two sphero-
cylinders of the same lengths as the chains,20

α̃ij

α̃segment,ij

= 1 + 3

2

⎛
⎜⎜⎜⎝

(
α̃segment,i

α̃segment,ij

)1/3

(mα,i − 1) +
(

α̃segment,j

α̃segment,ij

)1/3

(mα,j − 1)

2

⎞
⎟⎟⎟⎠

+ 3

8

(
α̃segment,i

α̃segment,ij

)1/3

(mα,i − 1)

(
α̃segment,j

α̃segment,ij

)1/3

(mα,j − 1), (14)

where mα,i is the number of segments of chain of species i.
We obtain the expression for the unlike i-j interaction of

segments by simply invoking the arithmetic result that the ex-
cluded volume of two spheres of unequal diameter is related
to that with the average diameter (additive spheres),

α̃
1/3
segment,ij = 1

2

(
α̃

1/3
segment,i + α̃

1/3
segment,j

)
∝ σ̃α,ij = 1

2
(σ̃α,i + σ̃α,j ). (15)

2. Estimating the effective radial distribution
function, χ̃ij

For a pure fluid the effective radial distribution function
at contact of two segments of equal size, χ̃i , can be found
from Wertheim’s first-order thermodynamic perturbation the-
ory (TPT1),38, 39 and can be written as the sum of a hard-
sphere contribution and a chain contribution,

χ̃i = χ̃HS,i + χ̃chain,i . (16)

The chain contribution, χ̃chain,i , arises due to the segments in
the same chain screening each other from collisions. In the
Carnahan and Starling40 treatment of the hard-sphere system
these contributions can be expressed as20

χ̃HS,i = 1 − 1
2 ỹχ,i

(1 − ỹχ,i)3
, (17)

χ̃chain,i = −5

8

(
mχ,i − 1

mχ,i

)
1 − 2

5 ỹχ,i(
1 − 1

2 ỹχ,i

)
(1 − ỹχ,i)

, (18)

where ỹχ,i = (π/6) σ̃ 3
χ,imχ,iNAρ is the segment packing frac-

tion. The radial distribution function does not go to unity in
the low-density limit, as segments on the same chain screen
each other from collisions with other segments, even at low
density.

In order to estimate a segment diameter σ̃χ,i and a chain
length mχ , i consistent with Eq. (16) an additional constraint is
needed. To this end we impose the constraint that the distance
between the end segments calculated using σ̃α,i and mα, i, and
σ̃χ,i and mχ , i are equal, namely,

σ̃α,i(mα,i − 1) = σ̃χ,i(mχ,i − 1). (19)

This constraint ensures that the length of the backbone of the
chain remains constant and that taking mα, i = 1, in the limit
of a spherical molecule, ensures mχ , i = 1.

In order to infer the mixing rule for the interaction pa-
rameters χ̃ij , we have followed the approach described in
SAFT-HS,23, 41, 42 here generalised to describe mixtures of
chains differing in the number and size of the hard spheres.
The resulting expressions are given by

χ̃ij = χ̃CS,ij

(
χ̃

(0)
ij + F (ρ̃)

)
(20)

χ̃CS,ij = 1

1 − ξ̃3
+ 3

(
σ̃χ,i σ̃χ,j

σ̃χ,i + σ̃χ,j

)
ξ̃2

(1 − ξ̃3)2

+ 2

(
σ̃χ,i σ̃χ,j

σ̃χ,i + σ̃χ,j

)2
ξ̃ 2

2

(1 − ξ̃3)3
, (21)
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χ̃
(0)
ij = 1 − 1

8

[(
mχ,i − 1

mχ,i

) (
σ̃ 3

χ,j + 3
2 σ̃χ,i σ̃

2
χ,j( σ̃χ,i+σ̃χ,j

2

)3

)
+

(
mχ,j − 1

mχ,j

) (
σ̃ 3

χ,i + 3
2 σ̃χ,j σ̃

2
χ,i( σ̃χ,i+σ̃χ,j

2

)3

)]
, (22)

F (ρ̃) =
∑

i,j x̃i x̃j

(
π
6

( σ̃χ,i+σ̃χ,j

2

)3)
χ̃CS,ij

(
1−χ̃

(0)
ij

)+ Z̃chain

4ρ̃∑
i,j x̃i x̃j

(
π
6

( σ̃χ,i+σ̃χ,j

2

)3)
χ̃CS,ij

(23)

Z̃chain = −
∑

i

x̃i

(
mχ,i − 1

mχ,i

) ⎛
⎝ ξ̃3(1 − ξ̃3) + 3

2 σ̃χ,i ξ̃2(1 + ξ̃3) + 1
2 σ̃ 2

χ,i ξ̃
2
2

( 2+ξ̃3

1−ξ̃3

)
(1 − ξ̃3)2 + 3

2 σ̃χ,i ξ̃2(1 − ξ̃3) + 1
2 σ̃ 2

χ,i ξ̃
2
2

⎞
⎠ , (24)

where the moment densities are defined as ξ̃m = (π/6)
NA

∑
i σ̃

m
χ,imχ,ixiρ. More details are given in the Appendix,

together with various mixing rules that are considered.

3. Estimating the zero-density parameters

In order to calculate the zero-density limit of the viscos-
ity of free segments, η̃

(0)
i , we make use of Eq. (5) for each

pure species. The interaction viscosity in the zero-density
limit, η̃

(0)
ij , for each binary pair, is then given by

η̃
(0)
ij = η

(0)
ij χ̃

(0)
α,ij , (25)

where χ̃
(0)
α,ij is given by Eq. (22) using σ̃α,i and mα, i for

consistency with Eq. (5).

E. Application to real mixtures

To perform an initial assessment of the accuracy of the
newly developed VW-chain method, we limit our investi-
gation to liquid mixtures consisting of n-alkane molecules.
Although in the VW model different species are repre-
sented by homonuclear chains, whose segments can have
different diameters, in this particular example, we represent
each alkane molecule as a chain made up of equally sized
“methane-like” segments. For this purpose, the diameter
of a segment, σ̃α , is taken to be the effective diameter of
methane at a given temperature, where methane is modelled
as a single segment molecule. We have successfully used this
concept in our previous work20 to analyse the viscosity of
pure normal alkanes. The effective diameter of methane, σ̃α ,

is obtained from Eq. (2), where the parameter α is evaluated
from Eq. (13), which requires knowledge of the viscosity of
pure methane at a given temperature. A figure showing σ̃α

as a function of temperature can be found in Ref. 20. For an
n-alkane of carbon number C, the number of segments, mα , is
calculated from the formula mα = 1 + (C − 1)/3 developed
from consideration of the equilibrium thermodynamics,41–43

that was also shown to be valid when analysing viscosity.20

Once σα and mα are known one can calculate η̃
(0)
i , χ̃

(0)
i , and

α̃i for each alkane by means of Eqs. (5), (11), and (13),
respectively. The calculation of σ̃χ and mχ for each alkane is
slightly more intricate and it involves a simultaneous solution
of Eqs. (16) and (19), where the value of effective radial
distribution function is obtained from Eq. (11).

It is interesting to note that, unlike σ̃α which is only
a function of temperature, σ̃χ is also a weak function of
density. This is not surprising since σ̃χ is evaluated from
the effective hard-core radial distribution function, χ̃ , (see
Eq. (16)), which is a function of density. This raises an
interesting question, at what density should one evaluate σ̃χ?
Or more to the point, given the molar density of the mixture,
ρ, at what density should one evaluate the pure species
parameters, so that they are representative of the interactions
that the pure species undergo in a mixture? In the original
VW method,26, 27 based on hard spheres, the mixing rule for
the effective radial distribution function was written in terms
of radial distribution functions for pure species and hence the
molar density was an implied choice. However, this choice is
unsuitable at liquid-like densities for mixtures of molecules
that are very different in size. This difference in size makes
the packing fraction very different for each species at the
same molar density. Hence, such a pure fluid does not provide
a good representation of the interactions of that particular
species in the mixture. For this reason and given that the crit-
ical volume of a fluid is usually regarded as a measure of the
hard-core volume, we have chosen to evaluate the required
properties of the pure species at the same reduced density,
(ρr = ρ/ρcritical), as that of the mixture. For the purposes of
this paper the critical density of the mixture was estimated by
means of ρc,mix. = [

∑
xi/ρc,i]−1. We will further examine

the consequence of this density choice in Sec. III.
Once the pure species parameters, σ̃α,i , mα, i, σ̃χ,i , and

mχ , i have been evaluated one can evaluate all the mixture
parameters by means of Eqs. (20)–(25) and subsequently the
mixture viscosity by means of Eqs. (6)–(10). Therefore, to
evaluate the viscosity of a liquid mixture of n-alkanes with
the VW-chain method one only requires a knowledge of the
viscosity of pure species and two temperature-dependent,
dilute-gas binary parameters, η

(0)
ij and A∗

ij . For the pur-

pose of this work η
(0)
ij and A∗

ij are obtained from standard
references,35, 36 while the sources of pure species viscosity
are discussed in Sec. III.

III. RESULTS AND DISCUSSION

In order to illustrate the predictive power of the VW-
chain method and to investigate some of the assumptions
made in deriving it, we examine two examples in detail.
One, a (n-octane + n-dodecane) mixture made up of long

Downloaded 16 May 2013 to 130.237.208.184. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



074514-6 de Wijn et al. J. Chem. Phys. 136, 074514 (2012)

chain-like molecules and the other, a (methane + n-decane)
mixture consisting of spherical and long chain-like molecules.
For both of these mixtures the original VW method, which
is based on representing molecules as effective hard spheres,
failed to provide an accurate description of the liquid
viscosity.

There exist accurate sets of experimental data, for both
mixtures, that in this study we use as a benchmark. In his
Ph.D. thesis, Caudwell44 reported viscosity and density mea-
surements for two liquid mixtures of (n-octane + n-dodecane)
(xoctane = 0.434 and xoctane = 0.743), at three temperatures
from 323.15 to 423.15 K and pressures up to 200 MPa with a
quoted uncertainty of 2%. Audonnet and Padua45 have mea-
sured the viscosities and densities of (methane + n-decane)
mixtures using a vibrating-wire technique with a quoted un-
certainty of 3%. These measurements cover a temperature
range from 303.15 to 393.15 K and pressures up to 75 MPa.

The VW-chain method requires knowledge of the pure-
species viscosity. The viscosity of pure methane is obtained
from Quinones-Cisneros et al.46 as implemented in REF-
PROP V8. In the temperature and density range of interest in
our work the claimed uncertainty of the correlation ranged
from 2% to 5%. The correlations of Huber et al.47, 48 are
used to estimate the viscosity of the n-octane, n-decane, and
n-dodecane. The uncertainty of these correlations is between
2% and 3%. The correlations reproduce Caudwell’s pure-
species viscosity data with deviations ranging from −4.2%
to +0.6% for n-octane and from −1.5% to +4.9% for
n-dodecane, while the pure n-decane data of Audonnet and
Padua is reproduced with a deviation ranging from −2.5% to
0.7%.

The percentage deviations of the VW-chain pre-
dicted data from the experimental data for the (n-octane
+ n-dodecane) mixture is illustrated in Fig. 1. The experi-
mental data are reproduced with an absolute average deviation
(AAD) of 1.3% and maximum absolute deviation of 3.5%. No
trends in temperature or density could be discerned. Taking
into account the uncertainty of pure species correlations and
the quoted experimental uncertainty of the data, the agree-
ment can be deemed to be very good.

The percentage deviation for the (methane + n-decane)
mixture is shown in Fig. 2. The deviations are larger than
for the (n-octane + n-dodecane) mixture, with an AAD of
5.4% and maximum absolute deviation of 14%. There is a
strong trend with density which indicates that further refine-
ment of VW-chain model is necessary for highly asymmetric
alkane mixtures of this type. However, it should be pointed
out that the viscosity of this mixture exhibits a very strong,
non-linear increase with increasing composition of n-decane
which makes accurate predictions rather difficult. For instance
at a mixture density of 742.4 kg/m3 the viscosity of pure n-
decane is approximately five times larger than that of pure
methane, at the same reduced density.

A number of assumptions have been made in develop-
ing the VW-chain method. We investigate the influence of
some of the assumptions on the overall agreement between
the predicted and experimental data and report the results
for the (methane + n-decane) mixture only, as the (n-octane
+ n-dodecane) system appeared to exhibit similar qualitative

FIG. 1. Viscosity deviations obtained with the VW method for chain
molecules developed here from the experimental data for (n-octane
+ n-dodecane) of Caudwell (Ref. 44).

behaviour. An assessment of the use of different mixing rules
(see Appendix) on predictive capability of VW-model is illus-
trated in Fig. 3. Although there are differences of the order of
5% between different sets of mixing rules the general trend
is to shift the deviations, but not affect the density trend al-
ready observed for this mixture. The difference between the
predictions with mixing rules 1–3 and 4–5 appears to decrease
with a decrease in the asymmetry of the mixture and for the
(n-octane + n-dodecane) mixture it is less than 1%.

The effect of evaluating the pure species properties at the
molar, mass, and reduced density of the mixture is demon-
strated in Fig. 4. The results for molar density indicate a two
order of magnitude over-prediction. Furthermore, evaluating
pure species properties at the molar density of the mixture re-
quires properties of the heavier species at unrealistically high
densities, where either of the pure species is solid or there are
no viscosity correlations available. Although the deviations

FIG. 2. Viscosity deviations obtained with the VW method for chain
molecules developed here from the experimental data for (methane
+ n-decane) of Audonnet and Padua (Ref. 45).
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FIG. 3. Viscosity deviations obtained with the VW method for chain
molecules developed here from the experimental data for (methane
+ n-decane) of Audonnet and Padua (Ref. 45) using: Eq. (A10), Ansatz 1;
Eq. (A11), Ansatz 2; Eq. (A12), Ansatz 3; Eq. (A13), Ansatz 4; and
Eq. (A14), Ansatz 5.

decrease with a decrease in the asymmetry of the mixture,
this choice of density is unsuitable for application in the liq-
uid state. This is not surprising since the molar density will
result in a large overestimation of collision rate for heavier
species, that unduly influences the collision rate between un-
like species. The choice of either mass or reduced density
would appear to offer a better description of the overall col-
lision rate. As illustrated in Fig. 4, the choices of mass and
reduced density result in similar deviations. However, evalu-
ating pure species properties at the mass density of the mix-
ture requires properties of the lighter species at unrealistically
high densities, thus limiting its applicability.

We have refrained in this work from examining the role
that the connectivity of the segments in a chain plays in de-

FIG. 4. Viscosity deviations of obtained with the VW method for
chain molecules developed here from the experimental data for (methane
+ n-decane) of Audonnet and Padua (Ref. 45) when the properties of
the pure species are evaluated at the molar, mass, and reduced density of
the mixture.

termining the viscosity. Although one could, for this purpose,
form a fluid of disconnected segments, the VW model, in its
present form, cannot be used to estimate the viscosity of such
a fluid. In the VW method, one evaluates the effective size
(and shape) of the species from the viscosity of each pure
species. In doing so, one postulates that the molecules can
be represented as chains of connected segments whose ef-
fective parameters, σ̃χ and mχ , are obtained from the viscos-
ity. Although for alkane mixtures, presented in this work, one
represents a segment as having a “methane-like” effective di-
ameter σ̃α , the mass of segment is given by M̃ = Malkane/mα .
Hence, if we were to break up the chain to form a fluid con-
sisting of disconnected segments, there is no equivalent pure
fluid to be used as the source of viscosity for σ̃χ and mχ . Nev-
ertheless the comparison of the high-density limit of the ra-
dial distribution function at contact for chains with that for
spheres, Eqs. (16)–(18), does confirm the intuitive expecta-
tion that the connectivity of chain molecules has less impact
at high density.

IV. CONCLUSIONS

The VW method, that used to predict the viscosity of
dense fluid mixtures made up of molecules represented as
hard spheres, has been extended in this work to predict
the viscosity of liquid mixtures consisting of chain-like
molecules. This was achieved by postulating that the
molecules can be represented as chains made up of hard,
spherical segments that undergo instantaneous collisions.
The new expressions for the viscosity of liquid mixtures
were subsequently derived by extending the Enskog-Thorne
approach to chain-like molecules. For realistic fluids at
liquid-like densities, the resulting description suffers from
the same deficiencies as the original Enskog’s theory. In
particular, it cannot be used to predict a priori the viscosity
from the knowledge of the size and shape of the molecules.
However, following the original VW method, we showed in
the present work that it is possible to assign the molecular
size and shape to each species in the mixture from knowledge
of its viscosity. One of the consequences of using the effective
molecular parameters is that one needs to distinguish between
effective size of the molecule for the collisional dynamics
and that for the excluded volume. By making an additional
constraint that ensures that the length of the backbone of
the chain remains constant we can describe the molecules of
each pure species by three effective parameters; namely two
diameters, one for collision dynamics and one for excluded
volume, and the number of segments in the chain.

In order to calculate the viscosity of a mixture, we need
to relate the effective parameters of the pure species to those
for the like and unlike binary interactions. We have chosen to
do so at the level of excluded volumes and radial distribution
functions and consequently we have developed mixing rules
for these two quantities. The mixing rule for excluded vol-
ume is relatively straightforward and is based on geometric
considerations that include the mutual excluded volume of
two spherocylinders and the assumption that the excluded
volume of two spheres can be obtained by using an average
diameter. In the limit of zero density it is possible to derive
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the thermodynamically consistent mixing rule for the radial
distribution function and we have done so by following the
SAFT approach. At finite density the present theory does not
allow us to uniquely determine the chain contribution. Hence,
we have postulated a number of possible Ansätze regarding
the approximate density behaviour of the chain contribution.
At present, it is only at the level of validation of the VW-
chain method where one could distinguish between different
possibilities.

The newly developed VW-chain model has been pre-
sented for the prediction of the viscosity of liquid mixtures. It
is founded on the kinetic theory, modified to take into account
the behaviour of real fluids, and on a set of thermodynam-
ically consistent mixing rules. The model has no adjustable
parameters, and requires no dense mixture viscosity data. The
VW-chain model has been tested by comparing its predic-
tions with the experimental viscosity data for the (n-octane
+ n-dodecane) and the (methane + n-decane) mixtures, i.e.,
mixtures made up of long, chain-like molecules and mixtures
consisting of spherical and long chain-like molecule. The
experimental data for the (n-octane + n-dodecane) mixture
are reproduced with an AAD of 1.3% and maximum abso-
lute deviation of 3.5%, while for the (methane + n-decane)
mixture the AAD was 5.4% and maximum absolute deviation
was 14%. This illustrates that the newly developed VW–chain
model is capable of accurately representing the viscosity of
real liquid mixtures.

We are currently undertaking a more encompassing vali-
dation of the VW-chain method and will shortly report on its
ability to predict the viscosity of a plethora of n-alkane mix-
tures. In future work we intend to examine the explicit effect
of attractive interactions on the viscosity of chain molecules
within a full SAFT-VR treatment43, 49 for systems with hard-
core segments interacting via variable range square-well,43

Yukawa50 or soft-core51, 52 interactions.
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APPENDIX: THE RADIAL DISTRIBUTION FUNCTION
OF CHAIN MIXTURES

In this appendix, we derive a mixing rule for the segment
collision rate parameters, χ̃ij . The factor χ was originally in-
troduced by Enskog11, 12 to correct the probability of colli-
sion in dense fluids made up of hard spheres. From the Clau-
sius virial expression for the pressure, it is possible to prove
that, in the thermodynamic limit, χ converges to the radial
distribution function at contact. Here, following the approach
presented in our previous work,20 we assume this link is still
valid for chain molecules and define an effective radial distri-
bution function at contact per segment, χ̃ij . As discussed in
Sec. II B, within the dense region, a fluid consisting of a mix-

ture of chain molecules is modelled as a fluid of hard spheres
of various diameters. By means of the compressibility fac-
tor, an equation is obtained for a sum of all χ̃ij and further
equations are found for the zero-density limits of χ̃

(0)
ij . Fi-

nally, a simple Ansatz is made in order to infer the density-
dependence of χ̃ij .

The compressibility factor of a chain molecule mixture,
Z̃, can be used to define an effective radial distribution func-
tion, χ̃ij , using the pressure equation,53

Z̃ ≡ 1 + 4ρ̃
∑
i,j

x̃i x̃j

(
π

6

(
σ̃i + σ̃j

2

)3
)

χ̃ij . (A1)

Furthermore, the Helmholtz free energy can be expressed as

A = AHS + Achain = AHS +
∑

i

Ni (mi − 1) aii , (A2)

where the index i runs over all the species. AHS is the
Helmholtz free energy of the hard-sphere contribution to the
mixture. Ni and mi are the number of molecules and segments
per molecule for species i, and aii is the free energy change
due to the bonding of two adjacent segments belonging to a
given molecule of species i.

By differentiating Eq. (A2) with the respect to the volume
we can obtain the compressibility factor. Hence, we define
that

Z̃ = Z̃HS + Z̃chain, (A3)

χ̃ij ≡ χ̃HS,ij + χ̃chain,ij , (A4)

where Z̃HS is the compressibility factor for a mixture of free
hard spheres and χ̃HS,ij is the radial distribution function at
contact of free hard spheres of species i and j.

Z̃chain is the contribution due to the segment bonding in
the chains and can be written as23

Z̃chain = ρ̃

ÑkBT

(
∂Achain

∂ρ̃

)
T

= ρ̃

kBT

∑
i

x̃i

(
mi − 1

mi

) (
∂aii

∂ρ̃

)
T

, (A5)

where Ñ = ∑
i Nimi is the number of segments in the mix-

ture. Z̃HS is defined as

Z̃HS = 1 + 4ρ̃
∑
i,j

x̃i x̃j

(
π

6

(
σ̃i + σ̃j

2

)3
)

χ̃HS,ij . (A6)

In order to estimate the free energy contribution due to bond-
ing, aii, one can consider an associating mixture of monomers
in the limit of complete association, corresponding to the
TPT1 approximation.23, 38 The chemical potential due to the
formation of each bond at infinite dilution is given exactly54, 55

by −kBT ln χ̃HS,ij , and, as is common in SAFT approaches,
the cost in free energy per bond per molecule for the fully
bonded chain fluid can thus be approximated as

aii = −kBT lnχ̃HS,ii , (A7)

which essentially defines χ̃HS,ii = exp (−aii/kBT ) as the
contact value of the potential of mean force, first introduced
by Kirkwood.56
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Combining Eqs. (A1) and (A3)–(A7) yields an equation
for a weighted sum of χ̃chain,ij in terms of chain lengths and
hard-sphere parameters, namely

∑
i,j

x̃i x̃j

(
π

6

(
σ̃i + σ̃j

2

)3
)

χ̃chain,ij

= −1

4

∑
i

x̃i

(
mi − 1

mi

) (
∂lnχ̃HS,ii

∂ρ̃

)
. (A8)

χ̃HS,ii can be estimated using the extensions of the Carnahan
and Starling expression40 to mixtures57, 58 which is given by
Eq. (21). In order to solve Eq. (A8) for χ̃chain,ij we first ex-
amine the zero-density limit.

When two segments are on trajectories that lead to a col-
lision, a third segment near one of the segments may collide
with it before, thus screening the original collision. χ̃chain,ij

incorporates the effect of this screening of collisions between
species i and j by other segments, including those of the
same species and the same chain. The probability of find-
ing two segments near to each other, so that one can screen
the collision of the other, is non-zero even in the low-density
limit, because the neighbouring segments in the same chain
are always close. Screening, therefore, also happens in the
low-density limit, and χ̃

(0)
chain,ij = lim

ρ→0
χ̃chain,ij , is non-zero.

However, as the probability of finding two chains in close
proximity does vanish in the low-density limit, screening of
collisions between segments of two species can only occur in
the low-density limit due to segments of either of the same
two species, and not those of any third species. This means
that all other species can be ignored and in order to determine
χ̃

(0)
chain,ij one can simply consider a binary mixture of species

i and j.
For collisions between segments of species i with other

segments of species i, the radial distribution function at con-
tact is equal to that of a pure fluid of species i,

χ̃
(0)
chain,ii = χ̃

(0)
chain,i , (A9)

which can be found from Eq. (18). Furthermore, for a binary
mixture, χ̃chain,ij = χ̃chain,j i , and thus χ̃

(0)
chain,ij is uniquely de-

termined by Eq. (A8) for a binary mixture of species i and j.
By substituting Eq. (A7), and rearranging terms, one thus ob-
tains Eq. (22) that is independent of segment fractions. This
is consistent with a low-density virial expansion where only
pair terms will contribute to the pressure of the system. By
analogy with the virial expansion, we can also obtain Eq. (22)
by simply assuming that χ̃

(0)
chain,ij is not a function of compo-

sition. Equation (22) obtained in this manner is not limited to
binary mixtures, but it is valid for any multicomponent mix-
ture.

However, the behaviour of χ̃chain,ij at finite density is less
easily understood; Eq. (A8) does not contain enough informa-
tion to determine χ̃chain,ij for higher densities. We therefore
propose a simple Ansatz regarding the approximate behaviour
of χ̃chain,ij with density. Several possibilities are assessed

χ̃chain,ij = χ̃
(0)
chain,ij + F (ρ̃), (A10)

χ̃chain,ij = χ̃
(0)
chain,ij + F (ρ̃) χ̃HS,ij , (A11)

χ̃chain,ij = χ̃
(0)
chain,ij + F (ρ̃)

(
χ̃HS,ij − χ̃

(0)
HS,ij

)
, (A12)

χ̃chain,ij = χ̃
(0)
chain,ij χ̃HS,ij + F (ρ̃), (A13)

χ̃chain,ij = (
χ̃

(0)
chain,ij + F (ρ̃)

)
χ̃HS,ij , (A14)

where F (ρ̃) is a function of segment density only which can
be determined from Eq. (A8). The results in the present work
correspond to Ansatz in Eq. (A14) as shown in Eq. (20) and
subsequent expressions. Additionally, at high densities the
chain contributions tend to be relatively small compared to
the hard-sphere terms. This means that for well-behaved sys-
tems, these Ansätze all produce very similar results.
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