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Internal degrees of freedom and transport of benzene on graphite
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In this paper, the chaotic internal degrees of freedom of a benzene molecule adsorbed on a graphite substrate,
their interplay with thermal noise, and their effects on the diffusion and drift are investigated analytically by
making use of the presence of two different time scales as well as by molecular-dynamics simulations. The
effects of thermal noise are investigated, and it is found that noise does not significantly alter the dynamics of
the internal degrees of freedom yet does affect the friction and diffusion of the center of mass. Qualitative and
quantitative theoretical predictions for the friction and diffusion of the molecule on the substrate are made and
are compared to molecular-dynamics simulations. Contributions to the friction and diffusion from the finite heat
bath as well as the slow dynamics of the center of mass are formally identified. It is shown that the torsion in
benzene, which dominates the nonlinear coupling, significantly affects the friction of the molecule on the surface.
The results compare favorably with recent results from He-neutron spin echo experiments on this system. Based
on the analytical and numerical results, some suggestions are made for experimental conditions under which the
effects of internal degrees of freedom might be observable.
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I. INTRODUCTION

The presence of internal degrees of freedom (DOF),
especially rotation, has been connected experimentally and
theoretically to the diffusion and friction of nanoscale objects
on surfaces (see, for instance, Refs. [1–5]). Recent He-neutron
spin echo experiments [6–8] of benzene molecules adsorbed
on graphite have shown that the friction is surprisingly high,
and it has been conjectured that this could be related to the
internal DOF of the molecule.

Several possible links can be identified between internal
DOF and transport. The internal configuration of the molecules
affects the interaction with the substrate and therefore transport
(see, for instance, Refs. [9,10]). However, the deterministic
internal DOF can also act as a source of noise [5,11] if their
dynamics are sufficiently fast and chaotic. In this paper, I
investigate the chaotic internal DOF of a benzene molecule
on a graphite substrate, their interplay with thermal noise, and
their effects on the diffusion and friction by making use of
the presence of two different time scales. The fast chaotic
internal degrees of freedom act as a finite heat bath, which
couples to the slow motion of the center of mass. I show that
under realistic conditions, the time-scale separation theory
of Ref. [12] is valid and links the dynamics of the internal
degrees of freedom directly and quantitatively to the diffusion
and friction of the molecule on the substrate. The theoretical
results compare well, qualitatively and quantitatively, with
simulations and experiments. One of the goals of this research
is to construct systems where the friction or diffusion can
be controlled by external means by manipulating the internal
degrees of freedom.

In Sec. II, the concept of time-scale separation in the
context of nonlinear dynamics and surface adsorbates is
introduced briefly. In Sec. III, the atomistic model for benzene
on graphite used in this work is described. In Sec. IV, the
time-scale separation theory is applied to the benzene on
graphite model with thermal noise, and expressions for the
effective interactions are derived. It is also shown that thermal
noise affects the dynamics of the internal DOF weakly but can

still significantly affect the effective momentum diffusion and
friction. A relation between the effective momentum diffusion
and friction is also derived. Molecular-dynamics simulations
of the system are described in Sec. V, in which specific DOF
can be frozen to investigate their effects and thermal noise can
be introduced slowly. The theoretical expressions are evaluated
numerically and are shown to compare favorably to simulation
results and experimental results of benzene on graphite in
Sec. VI. Finally, in Sec. VII, conclusions are drawn, and
suggestions are made for experimental conditions under which
the effects of chaotic internal DOF might be observable.

II. TIME-SCALE SEPARATION

We first consider the nature of the coupling between
the internal DOF and the center of mass. In Refs. [5,11], the
connections between transport and chaos in internal DOF were
outlined by taking advantage of the presence of multiple time
scales.

When a molecule like benzene is adsorbed weakly (ph-
ysisorbed) on a surface like graphite, it is not strongly distorted
by the surface. Accordingly, the internal forces are stronger
than the forces exerted by the substrate, and the time scales
of the dynamics of the internal DOF (for example vibrational
modes) are much shorter than the time scales of the motion of
the center of mass on the substrate. Specifically, the equations
of motion can be split into those for the slow motion of
the center of mass a = (R,P) and those for the fast internal
coordinates b = (q,p),

ȧ = f(a,b), (1)

ḃ = 1

ε
g(a,b), (2)

where f(a,b) and g(a,b) are both well-behaved functions of
the same order of magnitude and ε is the time-scale separation
parameter (0 < ε � 1).

To simplify the description of the slow subsystem, one
usually wishes to eliminate the fast variables. Several strategies
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exist for doing this, depending on the dynamical properties of
the fast degrees of freedom. A (quasi)periodic fast subsystem
can be averaged out [13], while a highly disordered fast
subsystem with many DOF can be described as an infinite
heat bath [14].

The internal dynamics of complicated molecules, however,
are neither many nor (quasi)periodic [5], but rather, they are
chaotic. A fast chaotic subsystem acts as a finite heat bath,
leading to stochastic driving and damping of the slow system
[12,15–17] (in this case the center of mass of the molecule on
the substrate), with clear signatures of the finite size of the fast
system and the finite amount of energy stored in it.

When a dynamical system explores the entire phase space
for almost all initial conditions, it is called ergodic. When,
in addition, sets of initial conditions are smeared out after
a long time, it is referred to as mixing. (See, for instance,
Refs. [18,19].) If the fast subsystem has this property, its
long-time behavior is independent of the initial conditions.
If correlation in the fast subsystem also decays exponentially,
then the dynamics of the slow coordinates a = (R,P) can be
described by a Fokker-Planck equation for their probability
density ρ(a,t) [12],

∂ρ(a,t)

∂t
=

∑
μν

∂

∂aμ

∂

∂aν

D(2)
μν(a)ρ(a,t)

−
∑

μ

∂

∂aμ

[
D(1)

μ (a)ρ(a,t)
]
, (3)

where D(1)(a) is the six-dimensional effective drift vector and
D(2)(a) is the 6 × 6 effective momentum diffusion matrix.
The subscripts μ,ν indicate the six components of the slow
coordinates, with 1, 2, 3 referring to the positions and 4, 5, 6
referring to the momenta. The effective momentum diffusion
and drift functions can be expressed in terms of averages
over the invariant density of the fast subsystem for fixed slow
coordinates, i.e., the probability density in the phase space
of the fast subsystem, which is left unchanged by the time
evolution of the dynamics. One finds [12]

D(2)
μν(a) =

∫ ∞

0
dt ′〈δfμ(a,ξ (t ′,b; a))δfν(a,b)〉E (4)

= O(ε), (5)

D(1)
μ (a) = 〈fμ(a,b)〉E

+
∑

ν

∫ ∞

0
dt ′

〈
fν(a,b)

∂δfμ(a,ξ (t ′,b; a))

∂aν

〉
E

(6)

= 〈fμ(a,b)〉E + O(ε2), (7)

where 〈·〉E is used to indicate an ensemble average over the
invariant density, ξ (t,b; a) is the solution of the equations of
motion for the fast subsystem for fixed a and initial condition
b, and

δf(a,b) = f(a,b) − 〈f(a,b)〉E . (8)

The symbol O is used here to indicate the order of magnitude of
the next terms, which are not necessarily negligible. It should
be noted that typical low-dimensional Hamiltonian systems are
not mixing but have a complicated phase space, with regions
of chaotic and quasiperiodic behavior [18–21]. However, the

mixing property is not strictly required for the expressions
above [11]. Furthermore, in Sec. IV A, it is shown that the
addition of the substrate temperature ensures both exponential
decay of correlation in the fast subsystem and mixing.

In short, if the internal DOF of a molecule are chaotic, then
they act as a finite heat bath, providing noise to drive diffusion
in the momentum Eq. (4) and viscous friction [the second term
in Eq. (6)], affecting the diffusion and friction of the center of
mass of the molecule on a surface [5,11].

III. CHAOS IN MOLECULES: BENZENE ON GRAPHITE

This work is concerned with the time-scale separation
in benzene molecules on graphite, a prototype system for
molecular adsorption. In order to investigate benzene, a model
was developed in Ref. [5] that is particularly suitable for
investigation of dynamical properties.

Though molecules are, in principle, quantum mechanical,
often they can be described classically by atomistic models.
Most typical atomistic force fields used for this (for example,
Tripos 5.2 [22]) contain predominantly harmonic terms. Nev-
ertheless, complicated geometries and torsion, both present
in the internal degrees of freedom of benzene, lead to strong
nonlinearities in the interaction and to chaos [5].

The total potential energy of a benzene molecule consists of
contributions from bending, stretching, and torsion of various
types of bonds. However, due to the low mass of the hydrogen
atoms, the energies associated with the vibrational modes
involving the C–H bonds are high compared to the typical
energy available at room temperature. Consequently, the C–H
bonds will always be in the ground state and do not participate
in the chaotic dynamics [5,23]. If an atomistic model is to be
used to investigate the internal degrees of freedom of benzene,
the C–H bonds must therefore be eliminated. Here we average
them out using a mean-field approximation to obtain a greatly
simplified Hamiltonian [5].

Let ri and p̃i denote the position and momentum of the
ith CH complex, ordered in such a way that i and i + 1 are
neighbors in the benzene ring. Let φi be the angle between
ri−1 − ri and ri+1 − ri and βi be the torsion angle associated
with the bonds between the (i − 1), i, (i + 1), and (i + 2)
carbon atoms. The potential energy of the benzene molecule
can be written as

Vbenzene(r1, . . . ,r6) = 1

2
kr

6∑
i=1

(‖r(i+1)(mod6) − ri‖ − r0)2

+ 1

2
kφ

6∑
i=1

(
φi − 2

3
π

)2

+ kβ

6∑
i=1

[1 + cos(2βi)], (9)

where kr and r0 are the C–C stretching force constant and
equilibrium distance, while kφ and kβ are the effective bending
force constant and the effective torsion constant. The model
system is shown in Fig. 1. In the mean-field approximation
of Ref. [5] for the Tripos 5.2 force field [22], which will be
used in this work, we have r0 = 1.47 Å, kr = 60.7 eV/Å2,
kφ = 6.85 eV/rad2, and kβ = 0.247 eV. The typical energies
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FIG. 1. (Color online) A schematic representation of a top view of
a benzene molecule on a graphite substrate. Because the C–H bonds
must be described quantum mechanically, they must be eliminated
from the equations of motion before a classical atomistic description
can be used. In the Tripos 5.2 force field three interaction parameters
remain, the C–C stretching parameter kr , the C–CH–C bending
parameter kφ , and the C–CH–CH–C torsion parameter kβ .

(frequencies and thus time scales) can be estimated from the
linearized system and range between 0.048 and 0.24 eV, which
is comparable to the fundamental vibrational frequencies of
benzene.

Chaos can be quantified by the largest Lyapunov expo-
nent, the rate at which infinitesimal perturbations expand.
If this is positive, then the system is chaotic. The largest
Lyapunov exponent of this model with energies equivalent to
room temperature can be calculated from molecular-dynamics
simulations and is λ = 0.5/ps, regardless of the precise
initial conditions [5]. The system is strongly chaotic and also
(close to) ergodic and mixing.

A. Graphite substrate with temperature

Here I consider benzene molecules adsorbed on a graphite
substrate. Graphite is frequently chosen as a substrate in exper-
iments. It is often modeled with two-dimensional sinusoidal
potentials (see, for instance, Ref. [1]). In this work a three-
dimensional substrate potential is needed, and therefore the
two-dimensional potential of a hexagonal graphite substrate
in the xy plane is extended by adding a harmonic term in the
z direction. The coefficient for the harmonic term is chosen
such that in a potential minimum the second derivative of
the potential energy is the same in all three directions. The
potential to which the CH complex at position r = (x,y,z) is
subject due to the substrate is given by [1]

VCH(r) = −2Vc

9

[
2 cos

(
2πx

a
√

3

)
cos

(
2πy

3a

)
+ cos

(
4πy

3a

)]

+Vc

8π2

27a2
z2, (10)

where Vc = 25 meV is the potential difference associated with
the corrugation and a = 1.42 Å is the in-layer interatomic
distance of graphite. The origin and direction of the x and y

axes are indicated in Fig. 1. Note that the typical frequency of
the dynamics of the center of mass in this potential (associated
with the lowest energy mode at 0.38 meV) is more than

two orders of magnitude lower than the lowest vibrational
frequency of the molecule.

The Hamiltonian of the system can now be written as

H = 1

2mCH

6∑
i=1

p̃2
i + Vbenzene(r1, . . . ,r6) +

6∑
i=1

VCH(ri), (11)

where p̃i is the momentum of the ith CH complex and mCH is
the mass of a CH complex.

In preliminary simulations without substrate thermal noise
[5], it was shown that in this system the chaos in the internal
DOF does indeed lead to diffusive behavior of the center of
mass and that this diffusion is normal, as expected from the
time-scale separation.

Because the substrate has a finite temperature, the molecule
adsorbed on it is subjected to thermal fluctuations. These
are modeled here with Langevin dynamics applied to each
CH complex: stochastic noise, driving the momentum with
diffusion constant DT , and viscous friction with momentum
damping constant γT ,

FLangevin = −γT mCHṙi + ηi(t), (12)

where the amplitude of the noise must be chosen such that
the expectation value of

∫ ∞
0 dt ηi(0) · ηi(t) is equal to 3DT .

The friction and diffusion constants can be related to the
temperature T through

DT

γT

= −mCHkBT . (13)

The amplitude of the noise can be varied without changing
the temperature by increasing γT proportionally with DT .
Typically, the friction coefficient γT of a graphite substrate
is expected to be around 1/ps. However, in recent He-
neutron spin echo experiments, it was found that the friction
coefficient of benzene on graphite was unexpectedly high,
2.2 ± 0.1/ps [6].

IV. EFFECTIVE INTERACTION

The effective dynamics of the benzene molecule on the
substrate are determined by the coupling and noise from the
substrate and molecule. In this section, the effective interaction
is investigated analytically in more detail, and the various
contributions are formally identified.

In order to apply the time-scale separation and use the
expressions of Eqs. (4) and (6) to determine the effects on
the diffusion and friction of the molecule, the equations of
motion must first be rewritten in the form of Eqs. (1) and (2)
by separating out the slow coordinates R,P of the center of
mass from the 15 fast internal DOF, which are denoted by
q1, . . . ,q5, with associated momenta p1, . . . ,p5. We have P =
6mCHṘ.

Let the lowest frequency of the linearized benzene molecule
be denoted by ωbenzene and the typical frequency of the substrate
be denoted by ωgraphite. The time-scale separation parameter is
related to these two frequencies (given in the previous section)
via

ε = ωgraphite

ωbenzene
≈ 0.0078. (14)
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Let the set of internal coordinates be denoted by

qi = ri − R√
ε

(15)

for i = 1, . . . ,5. The corresponding momentum is

pi = √
ε mCH(ṙi − Ṙ). (16)

For convenience of notation, we shall use the notation q6 =
−∑5

i=1 qi and p6 = −∑5
i=1 pi . As the potential energy of

benzene, Eq. (9), contains only differences of the positions of
the CH complexes and not R explicitly, Eq. (11) can be written
as

H = 1

12mCH
P2 + 1

2mCH ε

6∑
i=0

ṗi
2

+Vbenzene(q1/
√

ε, . . . ,q6/
√

ε)

+
6∑

i=1

VCH(R + qi/
√

ε), (17)

The equations of motion of the full system read

Ṙ = P
6mCH

, (18)

Ṗ = − ∂

∂R

6∑
i=1

VCH(R + qi/
√

ε) − γT P +
6∑

i=0

ηi(t), (19)

q̇i = pi

2mCH ε
, (20)

ṗi = − ∂

∂qi

Vbenzene(q1/
√

ε, . . . ,q6/
√

ε)

− ∂

∂qi

VCH(R + qi/
√

ε)

−γT pi + √
ε

⎛
⎝ηi(t) − 1

6

6∑
j=1

ηj (t)

⎞
⎠ . (21)

From a comparison between the energy constants of the
benzene molecule Eq. (9) and the potential of the substrate
Eq. (10), which is at least two orders of magnitude smaller, it
can be concluded that the right-hand sides of Eqs. (20) and (21)
are at least two orders of magnitude larger than the right-hand
side of Eq. (18) and the first term on the right-hand side of
Eq. (19). Consequently, as long as the Langevin noise and
friction due to the substrate temperature have the same slow
time scales as the rest of the substrate, Eqs. (18) and (19) are of
the form of Eq. (1), while Eqs. (20) and (21) are of the form of
Eq. (2).

Equations (18)–(21) can now be combined with
Eqs. (4)–(6) to calculate the effective interaction. Let δF(R; qi)
be the deviation of the total coupling F(R; qi) from the
average,

δF(R; qi) = F(R; qi) − 〈F(R; qi)〉E, (22)

F(R; qi) = − ∂

∂R

6∑
i=1

VCH(R + qi/
√

ε). (23)

Equation (18) does not contain the fast variables, and therefore
only the momentum of the center of mass is directly affected
by the noise from the fast degrees of freedom. This means that
only components of D(2)

μν with μ,ν > 3 can be nonzero. The
diffusion due to the noise from the two heat baths can then be
written as

D(2)
μν =

{
D̃μν(R) + δμνDT if μ,ν > 3
0 otherwise

, (24)

D̃μν(R) =
∫ ∞

0
dt 〈δF(R; ζ (qi ,t))δF(R; qi)〉E, (25)

where D̃(R) is the effective momentum diffusion matrix due
to the finite heat bath of the internal DOF and δμν is the
Kronecker delta. The solution of equations of motion for
the fast coordinates with initial conditions qi and fixed slow
coordinates is denoted by ζ (qi ,t).

As the stochastic noise ηi(t) has zero average, the effective
drift is

D(1)
μ =

⎧⎪⎨
⎪⎩

Pμ

6mCH
if μ � 3

〈
−∑6

i=1
∂

∂Rμ
VCH(R + qi/

√
ε)

〉
E

− Pμ · γ̃ (R) − γT Pμ if μ > 3
, (26)

where γ̃ (R) is the 3 × 3 effective friction matrix, which
is strictly positive definite. It can be determined from
the coupling and the decay of correlation in the internal
DOF by

γ̃μν(R) = − 1

6mCH

∫ ∞

0
dt

〈
δFμ(R; ζ (qi ,t))

∂Rν

〉
E

. (27)

The first term in the second line on the right-hand side of
Eq. (26), the average coupling due to the substrate potential,
can be thought of as a configurational term. It contains the

invariant density of the internal DOF through the ensemble
average, which can be affected in detail by the dynamics of
the internal degrees of freedom. The second term is the viscous
friction term due to the decay of correlation in the finite heat
bath, while the third term is the viscous friction due to the
coupling to the infinite heat bath of the substrate. Both the
friction and diffusion depend on the location on the substrate
and the direction of the momentum.

Equations (25)–(27) are a central result, giving theoretical
expressions for the reduced dynamics of the center of mass. In
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Sec. VI, these expressions will be evaluated and compared to
simulations.

A. The effects of thermal noise on the internal DOF

The thermal noise from the substrate temperature not
only affects the center of mass motion but also affects the
fast dynamics in the internal degrees of freedom. As it is
uncorrelated Gaussian white noise, it ensures exponential
decay of correlation in the fast subsystem.

Because the coupling to the substrate is weak compared
to the coupling between internal DOF, the fast subsystem is
essentially subject to very weak Gaussian white noise and
weak damping [see Eq. (21)]. Consequently, the dynamics
remain similar to the dynamics without noise.

Nevertheless, the noise still has important qualitative and
qualitative effects on the invariant density and thus indirectly
on the ensemble averages and the effective momentum
diffusion and friction. In particular, the noise smears out the dy-
namics and structures in the phase space [20]. This is important
because the results of Ref. [12] require that the fast subsystem
be mixing, while low-dimensional Hamiltonian systems are,
in general, not. However, with a suitable realization of the
Gaussian noise, any point in phase space can be reached in
finite time from any initial condition. In other words, the
entire phase space is explored in finite time. Together with
the smooth dynamics of the benzene molecules, the above
guarantees mixing. Consequently, a unique invariant density
exists, and the conditions of the time-scale separation theory
are met.

In the presence of thermal noise, the fast subsystem is sim-
ply coupled weakly to an infinite heat bath, with a temperature
equal to the substrate temperature T . In the absence of other
external driving, the ensemble average becomes equal to the
thermal average, with the invariant density equal to the Gibbs
distribution,

〈A(R,P,q1, . . . ,p5)〉E

=
∫

dq1 . . . dp5 exp

(
− H

kBT

)
A(R,P,q1, . . . ,p5). (28)

Weak noise can change the invariant density significantly
and therefore the reduced slow dynamics through the average
coupling as well as the effective friction and diffusion.

In addition to this, it is possible to obtain a direct relation
between the diffusion and drift. An addition coupling term can
be applied to the center of mass that restricts it to a small region
around a particular position R on the substrate. The internal
dynamics will not be affected, and only the average interaction
[the first term in the second line of Eq. (26)] term will change.
The effective friction and diffusion will therefore remain the
same and can be approximated as constants if the region is
sufficiently small. Hence, the center of mass is simply coupled
to an infinite heat bath, which produces diffusion and friction
tensors Dμν and Gμν with

Dμν = D̃μν(R) + DT δμν, (29)

Gμν = γ̃μν(R) + γT δμν. (30)

The center of mass is coupled to an infinite heat bath consisting
of the substrate and internal degrees of freedom of the

molecule. This heat bath necessarily has the same temperature
as the substrate. Consequently, similar to Eq. (13) but in
three dimensions and allowing for the possibility of negative
eigenvalues of the diffusion tensor,

γ̃μν(R) = − 1

kBT

∑
κ

|Dκ (R)| dκμ(R) dκν(R), (31)

where Dκ (R) is the κth eigenvalue of D̃μν(R) and dκι(R)
is the ιth component of the corresponding eigenvector.
Equation (31) is a particularly useful result, as Eqs. (25) and
(27) contain different information regarding the symmetries
of the diffusion and friction tensors. These symmetries can be
used to improve the numerical evaluation of the theoretical
expressions and are used for this purpose in Sec. VI.

B. Transport on the substrate

The diffusion and friction tensors cannot, as yet, be
measured directly in an experiment. What we are interested in,
therefore, is the combined average effects of all contributions
to friction and diffusion, i.e., decay of correlation, on a typical
trajectory on the substrate. Besides the loss of correlation
due to the thermal noise and the finite heat bath of the
internal DOF of the molecule, correlation can also decay
due to chaotic dynamics in the slow coordinates. As both
diffusion coefficients and friction coefficients are additive and
the substrate is symmetric under rotations of 60◦, this can be
written as

γtotal,μν = δμν(γslow + γbenzene + γT ), (32)

Dtotal,μν = δμν(Dslow + Dbenzene + DT ), (33)

where μ,ν > 3 and the subscripts slow and benzene indicate
the contributions from the slow coordinates and internal DOF
of the molecule, respectively. Note that if the substrate lattice
were rectangular, instead of hexagonal, the average friction
and diffusion would not be isotropic.

As the invariant density is not affected by the noise level
and the fast dynamics are not affected strongly for up to
realistic noise levels (1/ps), γbenzene and Dbenzene are constant
for fixed temperature, irrespective of γT . The slow dynamics
are affected directly by the thermal noise, but this effect is small
up to realistic noise levels. They are also affected indirectly by
the presence of the thermal noise, but not its intensity, through
the invariant density, as can be seen from the first term in the
second line of the right-hand side of Eq. (26), which contains
the ensemble average. The friction and diffusion of the reduced
slow system γslow and Dslow are not straightforward to treat
analytically, even though this system is essentially a single
particle moving in a complicated substrate potential (see, for
instance, Ref. [24]).

V. MOLECULAR DYNAMICS SIMULATIONS

Molecular dynamics simulations were performed for the
model system, and total friction and diffusion constants
were calculated numerically. In the simulated system, specific
internal DOF can be frozen, and the thermal noise due to the
substrate temperature can be introduced slowly, thus providing
insight into the effects of the internal DOF and substrate
temperature on transport.
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TABLE I. Several dynamical properties for the full system and
various sets of frozen internal DOF, namely, the system without
torsion, without any vibration, and without any internal DOF, for
a fully frozen molecule at commensurate and incommensurate
orientations and for a thermal average over the orientation. Shown are
the largest Lyapunov exponents λ of the noiseless system with and
without a substrate in units of 1/ps at energies comparable to room
temperature, the exponent of the diffusion α, and the induced friction
γ − γT when the Langevin dynamics are switched on.

Substrate

No substrate No noise Noise

Internal DOF λ λ α γ − γT

Full system 0.5 1.2 1 0.83
No torsion (1) 0 � λ � 0.014 1.2 �1 0.77
No vibration (2) 0 1.2 �1 0.77
Frozen, incommensurate – <0.6 1 < α < 2 0.29

(3a)
Frozen, commensurate – <0.6 1 < α < 2 0.99

(3b)
Frozen, average (3c) – <0.6 1 < α < 2 0.74

The equations of motion based on Eq. (11), with Eqs. (9)
and (10) substituted, were solved using the velocity-Verlet
algorithm or, in the case of Langevin damping and noise,
using a fourth order Runge-Kutta algorithm. As this work
is concerned with the dynamical properties of the system,
it is necessary in the Hamiltonian case to use an algorithm
that preserves the phase space volume exactly. The largest
Lyapunov exponent was obtained by numerically calculating
the growth rate of an infinitesimal perturbation. By virtue
of the Oseledec theorem, this growth rate is equal to the
largest Lyapunov exponent (see, for instance, Chap. 3 of
Ref. [25]).

Random initial conditions for the center of mass and the
internal DOF were chosen with energies corresponding to
room temperature. This was done by starting from a random
point on the constant energy shell of the linearized system,
with energy corresponding to room temperature and zero
angular momentum, and subjecting the system to thermal
noise for a period of time sufficient for reaching thermal
equilibrium.

The total friction coefficient was extracted from the trajec-
tories by fitting a linear dependence to the average change
in velocity as a function of the momentum, 〈P(t + �t) −
P(t)〉traj. Note that in order to accurately determine the friction
due to the internal DOF, �t must be sufficiently long for the
correlation in the internal DOF to have decayed. Similarly, the
diffusion of the center of mass of the molecule on the substrate
can be determined from the mean square displacement 〈[R(t +
�t) − R(t)]2〉traj as a function of the length �t of the time
interval, as was done in, for instance, Refs. [11,26]. If the
diffusion is normal, 〈[R(t + �t) − R(t)]2〉traj is proportional
to �t for long �t , and the prefactor is proportional to the
diffusion coefficient. If the mean square displacement does
not grow linearly with time, but with some other exponent α,

〈[R(t + �t) − R(t)]2〉traj ∝ tα, (34)

the diffusion is called anomalous. Anomalous diffusion can
be subdiffusion (α < 1) or superdiffusion (α > 1). Note that
anomalous diffusion cannot be described by a linear Fokker-
Planck equation such as Eq. (3).

A. Fixed internal DOF

Besides the full system, several derived systems were
considered with different sets of frozen internal DOF with
progressively fewer remaining internal DOF of the benzene
molecule, namely, (1) frozen torsion modes, (2) all internal
vibrations frozen while leaving rotation, and (3) fully frozen
internal DOF with (a) the molecule at incommensurate
orientation, (b) the molecule at commensurate orientation,
and (c) thermal average over all orientations. Commensurate
orientation means that the benzene molecule has the same
orientation as the hexagons of C atoms in the substrate.
The results that are described in the rest of this section are
summarized in Table I.

The lowest three fundamental vibrational frequencies of the
benzene molecule correspond to torsion modes, in which the C
atoms oscillate in the z direction. The other modes have higher
frequencies and involve exclusively bending and stretching.
By removing the dynamics in the z direction, the torsion
modes can be eliminated while leaving the other vibrational
modes intact [case (1)]. Removing the torsion modes greatly
affects the chaos in the internal degrees of freedom because
their coupling is strongly nonlinear and dominates the chaotic
dynamics. It also decreases the time scale of the internal DOF,
thereby increasing the separation between the time scales
and decreasing ε. In molecular dynamics simulations without
temperature, with a fixed center of mass position, and without
the torsion modes, it was found that the largest Lyapunov
exponent is typically below 0.014/ps depending on initial
conditions. This is much smaller than the value for the full
system with fixed center of mass, 0.5/ps. Without torsion,
the largest Lyapunov exponent is, for some initial conditions,
even zero within numerical error. The resulting trajectories are
not appreciably chaotic. Note that due to the small time steps
used in the simulations, the error in the Lyapunov exponents
for a particular set of initial conditions is less than 0.001/ps.
There is, however, variation due to the variation in the initial
conditions.

The bending and stretching modes have higher frequencies
and weaker nonlinear coupling. These modes can be frozen
as well by making the molecule completely rigid, leaving
only one internal DOF, the rotation around an axis parallel
to the z axis [case (2)]. With only one internal degree of
freedom, for fixed center of mass coordinates the molecule
cannot be chaotic. Because the fast, strong coupling between
the atoms has been removed, the remaining dynamical system
no longer has a fast time scale. The time scale of the rotation is
comparable with that of the center of mass motion. Note that
in very large rigid nanoclusters, the rotation is much slower
than the center-of-mass motion [2,27].

For fully frozen internal DOF, the molecule is rigid case
(3). Depending on the initial orientation, the interaction with
the substrate is different. Therefore, both commensurate and
incommensurate initial orientations are considered, as well as
systems where the interaction is equal to the thermal average
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for a rigid molecule that can still rotate. This is essentially
equal to the second line of Eq. (26) with the expression for
the ensemble average in noisy systems and Eq. (28) for a rigid
molecule with only rotational degrees of freedom and is a good
first approximation of the thermal average for a molecule with
all internal degrees of freedom.

B. Trajectories

In Fig. 2, examples of simulated trajectories of the center
of mass on the substrate of equal duration are plotted for
different dynamics of the internal DOF and without thermal
noise. The full system is chaotic, with the largest Lyapunov
exponent typically around 1.2/ps regardless of the precise
initial conditions. The motion of the center of mass on the
substrate is diffusive but is dominated by intermittent long-
range ballistic motion. The diffusion of the center of mass is
normal, with a total diffusion constant of around 27 nm2/ns.

When the torsion modes are eliminated case (1) or when
the internal DOF are frozen completely except for rotation
case (2), the dynamics remain chaotic. The largest Lyapunov
exponent in both cases is around 1.2/ps, similar to the full
system. The motion of the center of mass is diffusive. For many
initial conditions the diffusion is normal on the time scales
of the simulations (120 ns), but for some initial conditions,
superdiffusion cannot be excluded. As the molecule itself in
these two systems is either not chaotic or very weakly chaotic,
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FIG. 2. (Color online) Simulated trajectories of the center of
mass of a benzene molecule on graphite without temperature, for
the full system, as well as various systems in which some of the
DOF have been frozen. In all cases the simulations lasted for 72 ns,
and initially, the center of mass was at position R = (0,0,0). Two
distinct trajectories are shown for the full system, two trajectories
are shown for a system without motion along the z direction, and
two trajectories are shown for a system with a rigid molecule that is
allowed to rotate. For fully frozen benzene molecules one trajectory
is shown with incommensurate orientation, and one is shown with
commensurate orientation. Long ballistic jumps can be seen even for
the full system, which has normal diffusion.

it is the addition of the substrate that leads to chaos. In low-
dimensional Hamiltonian systems with such a complicated
phase-space structure, anomalous diffusion is to be expected
for some initial conditions (see, for instance, Ref. [24] and
some of the chapters in Ref. [28]).

When all internal DOF are removed case (3), the system
becomes more weakly chaotic, with the largest Lyapunov
exponent below 0.6/ps. For some initial conditions, there is
still diffusive behavior. In nearly all of these cases, the diffusion
is clearly superdiffusion, with scaling exponents α up to 1.9
[see Eq. (34)].

In the system under consideration here, the diffusion is
not governed by single hops but by ballistic motion in the
directions that correspond to low diffusion barriers, as can
be seen from Fig. 2. Ballistic motion was also observed
in experiments [6]. The anomalous diffusion in the systems
without torsion is also associated with these ballistic jumps.
In the full system, the noise from the chaotic dynamics of
the torsion modes causes the ballistic trajectories to decay
more quickly and reduces the total diffusion of the center
of mass on the substrate to normal diffusion. However, it is
still dominated by long jumps, and, on short time scales, the
diffusion is still anomalous, as has, for instance, also been
found for single particles with Langevin dynamics in periodic
and random potentials [26,29].

The results for the Lyapunov exponents and diffusion
exponents are summarized in Table I.

C. Decay of correlation in the internal DOF

The effective drift and diffusion are affected by the corre-
lation times of the internal DOF, as the effective momentum
diffusion and friction due to the internal DOF, as expressed in
Eqs. (25) and (27), contain integrals over correlation functions
of the coupling. The autocorrelation function in the expression
for the momentum diffusion, the integrand on the right-hand
side of Eq. (25), is straightforward to evaluate numerically. If
the integral over the autocorrelation function is not finite, the
diffusion, if any, is anomalous and cannot be described by a
linear Fokker-Planck equation such as Eq. (3).

In Fig. 3 the autocorrelation function of the coupling
is plotted for a benzene molecule kept at fixed position
R = (0,0,0) and momentum P = (0,0,0). It decays expo-
nentially with a decay time of 0.55 ps. The vibrations that
persist for a long time correspond to the highest vibrational
frequencies of the linearized system. As the nonlinear coupling
of these modes to other modes is weaker than that of the
modes with lower frequency, correlations in them decay more
slowly. The time integral of the autocorrelation function gives
an estimate of the velocity-diffusion coefficient, via Eq. (4),
which is equal to 0.0009 Å2/ps3. This value is close to 0,
which is the value expected from Eq. (31) in combination
with the symmetries of Eq. (27) in R = (0,0,0). As the
internal dynamics of the molecule are not strongly affected
by the substrate, the decay in the internal DOF is similarly
exponential for all positions on the substrate.

D. Thermal noise

We introduce thermal noise and vary the intensity between
zero and realistic values, while setting the temperature equal
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FIG. 3. The autocorrelation function for various components of
the coupling between the center of mass and internal DOF as a
function of time at R = (0,0,0),P = (0,0,0) for a single simulated
trajectory. Due to the symmetries of the lattice in point (0,0,0), the
autocorrelation functions for y-y coincides with that for x-x. From
the theory, all elements must integrate to zero. Modes with lower
frequencies decay faster. The inset shows a semilog plot of the second
derivative of the x-x autocorrelation function, which emphasizes the
high frequencies and falls off exponentially. The dotted line in the
inset is an exponential fit to the maxima with a decay time of 0.55 ps.

to room temperature, as described in Sec. III. In Fig. 4, the
diffusion coefficient of a benzene molecule with various types
of internal DOF on the graphite substrate at room temperature
is shown as a function of the imposed thermal friction γT .
As soon as the thermal noise is switched on, correlations in
the fast subsystem decay exponentially, and diffusion becomes
normal, regardless of the dynamics of the internal degrees of
freedom. Long ballistic jumps are destroyed faster by higher
noise intensities, leading to slower diffusion. At the realistic
intensities corresponding to γT = 1/ps, the diffusion of the
center of mass for all systems that have the rotational degree of
freedom is around 6.9 nm2/ns, which, given the nonempirical
nature of the substrate potential, is close to the experimental
result of 5.39 ± 0.13 nm2/ns [6].

With noise, the full system, the system without torsion, and
the system without any vibration have very similar diffusion
constants. In these systems, the diffusion is slower than in
systems without any internal DOF due to the faster destruction
of ballistic jumps. In systems in which the diffusion is not
dominated by ballistic motion but by single hops between
minima in the substrate potential, the additional noise due
to the chaos in the internal DOF might have more nontrivial
effects, potentially enhancing the diffusion of the center of
mass compared to thermal noise alone.

Of the three systems without internal DOF, the system with
the molecule at incommensurate orientation has the highest
diffusion coefficient because it has the weakest interaction with
the substrate. At γT ≈ 0.25/ps, the diffusion in systems with
internal DOF and systems without internal DOF and average
interaction has become nearly the same. At this point, the
noise due to the chaotic dynamics becomes weak compared to
the thermal noise and no longer affects the diffusion constant
significantly. As the expected noise intensity in the physical
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FIG. 4. The diffusion coefficient of the center of mass on the
substrate is plotted as a function of the thermal noise intensity
(characterized by the imposed friction γT ) in molecular dynamics
with Langevin dynamics at a temperature of 293 K. Without Langevin
dynamics, the systems that are totally frozen do not exhibit normal
diffusion. The error in the effective diffusion in the reduced system
at low noise intensities is large, around a factor of 3. The diffusion
coefficient of the full system without thermal noise is equal to 27
nm2/ns. The diffusion coefficients were obtained from trajectories
with a total duration of 2 μs.

system corresponds to around 1/ps, this means that the
diffusion of the benzene molecule is not significantly affected
by the noise due to the finite heat bath of the internal degrees of
freedom. However, in systems where the time-scale separation
parameter ε is larger, the effective momentum diffusion will be
larger [see Eq. (4)] and may become significant. Furthermore,
in the experiments of Ref. [9], long jumps dominate the
diffusion even at realistic noise intensities, and consequently,
noise from internal degrees of freedom can modify diffusion
significantly.

In Fig. 5, the induced friction coefficient is plotted as a
function of the imposed friction. The time interval used to
estimate the friction was 0.484 ps, as most of the correlations
in the internal DOF have decayed after this time (see Fig. 3
and Sec. V C). At γT = 2.0/ps, the total damping during the
time interval of 0.484 ps is so strong that it becomes difficult
to obtain an accurate estimate of the friction. However, as can
be seen from Fig. 3, for shorter time intervals correlation has
not decayed sufficiently to obtain accurate estimates.
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FIG. 5. The component of the friction due to the interaction be-
tween the internal DOF and the substrate is plotted as a function of the
imposed friction in molecular-dynamics simulations with Langevin
dynamics at a temperature of 293 K. The friction coefficients were
obtained by averaging over trajectories with a total duration of about
2 μs. For comparison, the friction constant of the full system without
thermal noise, γ0 = 0.75/ps, is also plotted.

VI. COMPARISON BETWEEN THEORY, SIMULATIONS,
AND EXPERIMENT

The qualitative theoretical results for the relation between
internal chaos and diffusion compare well to the simulation
results, as is summarized in Table I. In the full system,
where the internal DOF are chaotic (strictly positive Lyapunov
exponent) and correlation decays exponentially, the noise from
the internal DOF, combined with the time-scale separation,
leads to normal diffusive behavior. When the internal DOF are
not chaotic for some or all initial conditions, diffusion can be
anomalous. In the rest of this section, also quantitative results
from the theory for the reduced system are compared to results
from simulations of the full system.

A. Evaluating the theoretical expressions numerically

The theoretical expressions given in Eqs. (25) and (27)
contain averages and integrals over correlation functions of the
fast subsystem for fixed slow coordinates. These expressions
are difficult to evaluate in any more detail analytically, but here
they are evaluated numerically by performing simulations of

the internal DOF for fixed slow coordinates and calculating
the necessary averages and correlation functions. In these
numerical simulations, the parameter γT was set to a nonzero
value, 0.1/ps, to ensure that the system is mixing and has the
correct invariant density.

The average coupling term [the first term of the second line
of Eq. (26)] is simple to evaluate in numerical simulations.
Similarly, the autocorrelation function needed for the momen-
tum diffusion, shown in Eq. (25), is straightforward to obtain
from simulated trajectories and to integrate. The results for the
effective momentum diffusion as a function of the position are
shown in Fig. 6.

The expression for the friction coefficient Eq. (27) is more
complicated to evaluate quantitatively due to the derivative.
Because the invariant measure depends on the position of
the center of mass, the average and the derivative are not
interchangeable. Hence, in order to calculate the derivative,
the average coupling must be evaluated sufficiently accurately
at nearby positions. Numerical evaluation of this expression is
therefore more time consuming than for the diffusion and is
less accurate. In order to obtain sufficient statistics, the nearby
positions had to be chosen to be 0.26 Å apart. Results for the
effective friction coefficient are shown in Fig. 7.

As can be seen from Figs. 6 and 7, within the error of the
numerical evaluation, the effective momentum diffusion and
friction indeed have the same shape, with the correct ratio, and
thus obey Eq. (31).

B. Comparison of theory with simulations of the full system

It is possible to compare the theoretical results to numerical
trajectories. However, comparing the results from Eqs. (25)
and (27) that were obtained numerically in Sec. VI A to
diffusion and drift tensors obtained directly from numerical
simulations of the full system requires an accurate determi-
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FIG. 6. The effective velocity diffusion coefficient D̃μν(R) as a
function of position, obtained by evaluating the theoretical expres-
sion, Eq. (25), numerically. For reference, carbon atoms and bonds
between them are indicated with solid circles and dotted lines. From
Eq. (25) it is clear that the effective momentum diffusion does not
depend on the velocity or on the z coordinate.
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FIG. 7. The effective friction coefficient γ̃μν(R) as a function of
position, obtained by evaluating the theoretical expression, Eq. (27),
numerically. Autocorrelations were calculated for up to 0.7 ps and
integrated. For reference, carbon atoms and bonds between them are
indicated with solid circles and dotted lines. As with the diffusion, the
effective friction coefficient does not depend on the velocity or the
z coordinate [see Eq. (27)]. As it is more computationally involved
to calculate the friction tensor than the diffusion tensor, the results
are less accurate. Within the error of the numerical evaluation, the
effective friction indeed has the same shape as the diffusion, shown
in Fig. 6, with the correct ratio, and thus obeys Eq. (31).

nation of the mean square displacement in velocity space
from trajectories of the entire system. However, due to
the high dimensionality of the slow subsystem, extremely
long trajectories are needed to obtain useful statistics. With
currently available computing power this is not yet possible.
It is interesting to note that the theory can thus be used to
calculate properties of the system that cannot yet be obtained
from molecular-dynamics simulations.

Nevertheless, the theory can be tested by comparing total
diffusion and friction coefficients of the center of mass on
the substrate found from numerical simulations of the reduced
dynamics to those obtained from simulations of the full system.

The numerical values for the theoretical expressions at
specific points, obtained in Sec. VI A, can be used to obtain
an approximation for the effective drift and diffusion by fitting
it to a Fourier expansion with the appropriate symmetries,
cut off after a certain wave vector (in this case 8π/a).
These symmetries are the translation, rotation, and reflection
symmetries of the lattice, the reflection symmetries of Eq. (27),
the symmetry of the diffusion tensor in Eq. (25), and, finally,
Eq. (31). Though, in principle, there are many terms, due to the
large number of symmetries only four free parameters remain.

Results for the total friction and diffusion of the reduced
system are included in Figs. 4 and 5. At low noise levels, the
induced friction in the full system is about 0.83/ps, while the
reduced system has an induced friction of (0.86 ± 0.02)/ps.
The error is due to the error in the (fit to the) numerical
evaluations of the effective momentum diffusion and friction
and was estimated with a variational method.

The diffusion of the center of mass in the reduced system
follows that of the full system for high noise levels. For low
noise levels, however, there is a discrepancy. This is due to
the fact that in this regime the diffusion is dominated by long
ballistic jumps, as was mentioned in Sec. V B. The long jumps
are very sensitive to noise and damping and disappear at high
noise levels. The noise levels needed to destroy the long jumps
are comparable to the typical intensities of noise and damping
from the internal degrees of freedom. Nevertheless, the long
jumps survive in both the full and reduced system because
for some positions on the substrate there are no noise and
damping from the internal degrees of freedom. The duration
of the jumps, however, depends sensitively and in a highly
nontrivial way on the reduced dynamics in these regions,
where the noise level due to the internal DOF is extremely low.
Due to the statistical errors in the numerical evaluation of the
theoretical expressions, the error in the effective momentum
diffusion at these noise intensities is large, around a factor
of 3. It should be noted that, while the thermal damping γT

is usually taken to be a constant, it too could, in principle,
depend on position, which could affect the survival of long
jumps.

C. Various internal degrees of freedom

As the intensity of the thermal noise affects the dynamics
of the internal DOF only weakly and not the invariant density,
the effective friction and momentum diffusion are not affected
by it. From Fig. 5, it can be seen that the induced friction,
which contains the effective friction due to the finite heat bath
of the internal DOF, does not depend on the noise intensity.
Together with the values for the induced friction in the various
systems, one can use this to separate out the contributions from
the internal degrees of freedom.

The substantial difference between the induced frictions
in the fully frozen systems with commensurate and incom-
mensurate orientations (0.99/ps and 0.29/ps, respectively)
demonstrates that the interaction between the internal DOF
of the molecule and substrate strongly affects the friction. The
full system and other systems with reduced or partially frozen
dynamics lie somewhere in between these two extremes. The
next best approximation, the system without any internal DOF
but with the coupling averaged with thermal weight over
orientation, has an induced friction coefficient of 0.74/ps.
Because it is not related to the internal DOF, this amount
can be attributed to the slow dynamics.

The induced friction in the full system is 0.83/ps for a
wide range of noise intensities, whereas without thermal noise
the full system has an induced friction of γ0 = 0.77/ps. This
difference is due to the fact that even weak thermal noise
changes the invariant density significantly compared to the
system without noise (see Sec. IV A), and this affects the
friction induced by the finite heat bath [see Eq. (6)].

The induced friction in the systems that still possess rotation
but have frozen torsion modes is 0.77/ps in both the systems
with and without bending and stretching. The difference
between this value and the value for the full system can be
attributed to the chaotic dynamics of the torsion modes. The
remaining difference to the system with a rigid molecule with
thermal average over orientation is due to rotational dynamics.
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In summary, three contributions to the total friction can be
identified: the damping due to the thermal heat bath of the
substrate (γT ≈ 1/ps), a constant contribution from the slow
dynamics (γslow = 0.74/ps), and the contribution from the
chaotic internal DOF (γbenzene = 0.09/ps), which is dominated
by the torsion modes. This contribution from the internal DOF
is a combination of the average coupling and finite heat bath
due to the internal vibrations.

The total induced friction of 0.83/ps found in simulations
matches well with the theoretical predictions from the time-
scale separation theory, 0.86 ± 0.02/ps. With the addition of
the 1/ps substrate friction due to dissipation into phonon
modes, the numerical and theoretical calculations compare
favorably with the result of 2.2 ± 0.1/ps from He-neutron
spin echo experiments [6].

VII. CONCLUSIONS

In this work, the relationship between the internal DOF of a
benzene molecule and its motion on a graphite substrate were
investigated using time-scale separation theory and dynamical
properties, including the effects of thermal fluctuations. It was
shown that the fast dynamics of the internal DOF act as a
finite heat bath, while the motion of the center of mass is slow.
It was found that thermal noise affects the internal dynamics
of the molecule weakly but ensures the requirements of the
time-scale separation theory of Ref. [12], i.e., exponential
decay of correlation and mixing. The invariant density of the
internal DOF in the presence of noise is equal to the thermal
distribution. The total friction and diffusion of the center of
mass consist of contributions from the thermal heat bath of the
substrate, the finite heat bath of the molecule, and the decay
of correlation in the slow dynamics.

The theoretical expressions for the effective dynamics
were evaluated numerically, and numerical simulations of

the reduced system were performed. Their results compare
well with those from simulations of the full system. In the
molecular dynamics simulations, several sets of internal DOF
were frozen. It was found that the torsion of the benzene
molecule dominates the chaotic dynamics. Without them, there
is either anomalous superdiffusion or ballistic motion.

The total friction at room temperature consists of the
damping due to the infinite heat bath of the substrate, a
contribution from the slow dynamics, and one from the
internal degrees of freedom. These contributions together are
sufficiently large to account for the high friction found in
experiments [6].

The present results suggest several approaches that may
make it possible to utilize the internal DOF to affect diffu-
sion and friction on a substrate. Molecules that are floppy
possess many low-frequency vibrational modes with strong
nonlinear coupling, such as the torsion modes in benzene,
and consequently, their internal DOF produce more noise.
Furthermore, as the effective drift and diffusion decrease
with the time-scale separation parameter, combinations of
molecules and substrates where the time-scale separation is
weaker will produce larger effects. Finally, by selectively
exciting vibrational frequencies of the adsorbate with laser
light or by other means, the total energy in the internal DOF
could be increased, enhancing the noise due to the finite heat
bath and therefore changing the effective momentum diffusion
and friction. In this context, large, flat, photoactive molecules
such as phthalocyanines are particularly interesting.

ACKNOWLEDGMENTS

The author is grateful to A. Fasolino, S. Hallerberg,
and A. Rowan for stimulating discussions. The work has
been financially supported by a Veni grant of Netherlands
Organization for Scientific Research (NWO).

[1] A. E. Filippov, M. Dienwiebel, J. W. M. Frenken,
J. Klafter, and M. Urbakh, Phys. Rev. Lett. 100, 046102
(2008).

[2] A. S. de Wijn, C. Fusco, and A. Fasolino, Phys. Rev. E 81,
046105 (2010).

[3] A. E. Filippov, A. Vanossi, and M. Urbakh, Phys. Rev. E 79,
021108 (2009).

[4] W. R. Browne and B. L. Feringa, Nat. Nanotechnol. 1, 25
(2006).

[5] A. S. de Wijn and A. Fasolino, J. Phys. Condens. Matter 21,
264002 (2009).

[6] H. Hedgeland, P. Fouquet, A. P. Jardine, G. Alexandrowicz,
W. Allison, and J. Ellis, Nat. Phys. 5, 561 (2009).

[7] I. Calvo-Almazán, T. Seydel, and P. Fouquet, J. Phys. Condens.
Matter 22, 304014 (2010).

[8] A. P. Jardine, H. Hedgeland, G. Alexandrowicz, W. Allison, and
J. Ellis, Prog. Surf. Sci. 84, 323 (2009).

[9] M. Schunack, T. R. Linderoth, F. Rosei, E. Lægsgaard,
I. Stensgaard, and F. Besenbacher, Phys. Rev. Lett. 88, 156102
(2002).

[10] S.-P. Ju, W.-J. Lee, H.-C. Chen, and J.-G. Chang, Appl. Phys.
Lett. 90, 143112 (2007).

[11] A. S. de Wijn and H. Kantz, Phys. Rev. E 75, 046214 (2007).
[12] W. Just, K. Gelfert, N. Baba, A. Riegert, and H. Kantz, J. Stat.

Phys. 112, 277 (2003).
[13] A. Sanders and F. Verhulst, Averaging Methods in Nonlinear

Dynamics (Springer, New York, 1985).
[14] N. G. van Kampen, Phys. Rep. 124, 69 (1985).
[15] M. Bianucci, R. Mannella, B. J. West, and P. Grigolini, Phys.

Rev. E 51, 3002 (1995).
[16] A. Riegert, W. Just, N. Baba, and H. Kantz, Phys. Rev. E 76,

066211 (2007).
[17] C. Beck, Phys. A 233, 419 (1996).
[18] V. I. Arnold and A. Avez, Ergodic Problems of Classical

Mechanics (W. A. Benjamin, New York, 1968).
[19] J. R. Dorfman, An Introduction to Chaos in Nonequilibrium

Statistical Mechanics (Cambridge University Press, Cambridge,
1999).

[20] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, 1993).

011610-11

http://dx.doi.org/10.1103/PhysRevLett.100.046102
http://dx.doi.org/10.1103/PhysRevLett.100.046102
http://dx.doi.org/10.1103/PhysRevE.81.046105
http://dx.doi.org/10.1103/PhysRevE.81.046105
http://dx.doi.org/10.1103/PhysRevE.79.021108
http://dx.doi.org/10.1103/PhysRevE.79.021108
http://dx.doi.org/10.1038/nnano.2006.45
http://dx.doi.org/10.1038/nnano.2006.45
http://dx.doi.org/10.1088/0953-8984/21/26/264002
http://dx.doi.org/10.1088/0953-8984/21/26/264002
http://dx.doi.org/10.1038/nphys1335
http://dx.doi.org/10.1088/0953-8984/22/30/304014
http://dx.doi.org/10.1088/0953-8984/22/30/304014
http://dx.doi.org/10.1016/j.progsurf.2009.07.001
http://dx.doi.org/10.1103/PhysRevLett.88.156102
http://dx.doi.org/10.1103/PhysRevLett.88.156102
http://dx.doi.org/10.1063/1.2718485
http://dx.doi.org/10.1063/1.2718485
http://dx.doi.org/10.1103/PhysRevE.75.046214
http://dx.doi.org/10.1023/A:1023635805818
http://dx.doi.org/10.1023/A:1023635805818
http://dx.doi.org/10.1016/0370-1573(85)90002-X
http://dx.doi.org/10.1103/PhysRevE.51.3002
http://dx.doi.org/10.1103/PhysRevE.51.3002
http://dx.doi.org/10.1103/PhysRevE.76.066211
http://dx.doi.org/10.1103/PhysRevE.76.066211
http://dx.doi.org/10.1016/S0378-4371(96)00254-3


ASTRID S. DE WIJN PHYSICAL REVIEW E 84, 011610 (2011)

[21] A. Lichtenberg and M. Lieberman, Regular and Stochastic
Motion (Springer, New York, 1983).

[22] M. Clark, R. Cramer, and N. Van Opdenbosch, J. Comput. Chem.
10, 982 (1989).
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