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Abstract. We consider the Kolmogorov–Sinai entropy for dilute gases of N
hard disks or spheres. This can be expanded in density as hKS ∝ nN [ln nad+B+
O(nad)+O(1/N)], with a the diameter of the sphere or disk, n the density, and d
the dimensionality of the system. We estimate the constant B by solving a linear
differential equation for the approximate distribution of eigenvalues of the inverse
radius of curvature tensor. We compare the resulting values of B both to previous
estimates and to existing simulation results, finding very good agreement with
the latter. Also, we compare the distribution of eigenvalues of the inverse radius
of curvature tensor resulting from our calculations to new simulation results. For
most of the spectrum the agreement between our calculations and the simulations
again is very good.
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1. Introduction

It is generally believed that the approach to equilibrium of a typical many-particle system,
such as a gas or liquid, will depend on its dynamical properties. Specifically, the more
chaotic the system, the more rapidly its approach to (at least local) equilibrium will
proceed. Furthermore, the apparent randomness of these systems, in spite of their fully
deterministic microscopic behavior (at least for classical systems), has also been attributed
to the chaotic nature of their dynamics. Discussions of this can be found in e.g. books by
Dorfman [1] and Gaspard [2] and review papers by Van Zon et al [3, 4]. A very common
and generally used measure of chaos is the Kolmogorov–Sinai entropy, which we will
denote by hKS. In systems which are closed, the Kolmogorov–Sinai entropy hKS equals
the sum of all positive Lyapunov exponents, the average rates over very long times of
divergence (or convergence) of infinitesimal perturbations. It describes the rate at which
the system produces information about its phase-space trajectories, or equivalently about
the distribution of density over phase space in some ensemble. In systems with escape,
the Kolmogorov–Sinai entropy has also been connected to transport coefficients [5]–[8].
In such systems it is no longer equal to the sum of all positive Lyapunov exponents.

Chaotic properties such as the Lyapunov spectrum of systems of low [8]–[11] as well
as high [12] dimensionality, such as moving hard spheres or disks, have been studied
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frequently. Extensive simulation work has been done on their Lyapunov spectra [13]–
[15], and for low densities analytic calculations have been done for the largest Lyapunov
exponent [3], [16]–[18], the Kolmogorov–Sinai entropy [11, 16] and for the smallest positive
Lyapunov exponents [19, 20]. Analytic methods employing kinetic theory have been
applied to calculate chaotic properties. Agreement between analytic calculations and
numerical results is generally good, but with respect to the KS entropy there is one
notorious exception, which is the central issue of the present paper.

In this paper we consider a system consisting of N hard, spherical particles, of
diameter a, at small number density n, in d dimensions (d = 2, 3). We calculate the
Kolmogorov–Sinai entropy in the low-density approximation, where it is expected to
behave as [11]

hKS = Nν̄A

[
− ln(nad) +B + O(nad) + O

(
1

N

)]
. (1)

The constant A has been calculated by Van Beijeren et al in [11], but the results found
there for B were unsatisfactory.

In this paper we present a more successful calculation of B, through the distribution
of eigenvalues of the inverse radius of curvature tensor. The calculation presented here
differs from that presented by De Wijn in [21], in that it is far more elegant and less
cumbersome and the agreement of the results with values found in simulations is better.
On the other hand, the calculation here is less systematic and it is not clear how to apply
the results of this paper to calculating specific Lyapunov exponents, as can be done [22]
with the results of [21].

The paper is organized as follows. In section 2 we introduce Lyapunov exponents
and review the properties of hard-sphere dynamics in tangent space (the space in which
the dynamics is described, of infinitesimal deviations between nearby trajectories in phase
space). In section 3 we introduce the radius of curvature tensor and its inverse, relate the
KS entropy to the time average of the trace of the inverse radius of curvature tensor and
investigate the dynamics of these tensors both during free flight and in collisions. In 4
we present two approximate calculations of the average distribution of the eigenvalues
of the inverse radius of curvature tensor. In section 5 we compare the results of these
calculations to those of numerical simulations and we also compare the resulting values
for the coefficient B in equation (1) to those obtained in simulations and in previous
calculations. Finally, in section 6 we present our conclusions.

2. Lyapunov exponents and dynamics of hard spheres in tangent space

This section is an abbreviated version of similar sections in [20, 21]. It appears here to
make this paper more self-contained. For more details the reader may also consult [14].
Consider a system with an N -dimensional phase space Γ. At time t = 0 the system
is at an initial point γ0 in this space. It evolves with time, according to γ(γ0, t). If
the initial conditions are perturbed infinitesimally, by δγ0, the system evolves along an
infinitesimally different path γ + δγ, which can be specified by

δγ(γ0, t) = Mγ0
(t) · δγ0, (2)
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with the matrix Mγ0
(t) defined by

Mγ0
(t) =

dγ(γ0, t)

dγ0

. (3)

The Lyapunov exponents are the possible average rates of growth or shrinkage of such
perturbations, i.e.,

λi = lim
t→∞

1

t
ln |μi(t)|, (4)

where μi(t) is the ith eigenvalue of Mγ0
(t). For ergodic systems, the Lyapunov exponents

are expected to be the same for almost all initial conditions. For each exponent there is
a corresponding eigenvector of Mγ0

(t).
For a classical system of hard spheres without internal degrees of freedom, the phase

space and tangent space may be represented by the positions and velocities of all particles
and their infinitesimal deviations,

γi = (ri,vi), (5)

δγi = (δri, δvi), (6)

where i runs over all particles and γi and δγi are the contributions of particle i to γ and
δγ.

In the case of a purely Hamiltonian system, such as the one under consideration
here, hard spheres with only the hard-particle interaction, the dynamics of the system
are completely invariant under time reversal. Together with Liouville’s theorem, which
states that phase-space volumes are invariant under the flow, this leads to the conjugate
pairing rule [23, 24], i.e. for every positive Lyapunov exponent there is a negative exponent
of equal absolute value. In systems which are time reversal invariant, but do not satisfy
Liouville’s theorem, the conditions for and the form of the conjugate pairing rule are
somewhat different [17].

The system under consideration here has only hard-core interactions. Consequently,
the evolution in phase space consists of an alternating sequence of free flights and collisions.

During free flights the particles do not interact and the positions change linearly with
the velocities. The components of the tangent-space vector accordingly transform to(

δr′i
δv′

i

)
=

(
1 (t− t0)1
0 1

)
·
(
δri

δvi

)
, (7)

in which 1 is the d× d identity matrix.
In a collision between particles i and j momentum is exchanged between the

colliding particles along the collision normal, σ̂ = (ri − rj)/a, as shown in figure 1.
The other particles do not interact. For convenience we switch to relative and center
of mass coordinates, δrij = δri − δrj, δRij = (δri + δrj)/2, δvij = δvi − δvj , and
δVij = (δvi + δvj)/2. We find [16, 25]

δr′ij = δrij − 2S · δrij, (8)

δR′
ij = δRij , (9)

δv′
ij = δvij − 2S · δvij − 2Q · δrij, (10)

δV′
ij = δVij , (11)
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Figure 1. Two particles in a collision in relative coordinates. The collision normal
σ̂ is the unit vector pointing from the center of one particle to the center of the
other.

in which S and Q are the d× d matrices

S = σ̂σ̂, (12)

Q =
[(σ̂ · vij) 1 + σ̂vij ] · [(σ̂ · vij) 1− vijσ̂]

a(σ̂ · vij)
, (13)

where vij = vi −vj . Here the notation ab denotes the standard tensor product of vectors
a and b. Note that Q transforms vectors that are orthogonal to vij into vectors that
are orthogonal to v′

ij . The vector vij is a right zero eigenvector of Q, and v′
ij a left zero

eigenvector. Equations (7) through (13) determine Mγ0(t).

3. The radius of curvature tensor

Of particular interest for the Kolmogorov–Sinai entropy is the radius of curvature tensor,
as the former is equal to the time average of the trace of the latter’s inverse. Let δr and
δv represent the full dN -dimensional position and velocity perturbations respectively of
all particles. The inverse radius of curvature tensor, T (t), is defined [4, 8, 9, 25, 26] as the
inverse of the radius of curvature matrix3. It satisfies

δv(t) = T (t) · δr(t), (14)

resulting from some, almost arbitrary, initial T (0)4.

3.1. KS entropy and the inverse ROC tensor

To establish the relationship between the KS entropy and the trace of the inverse radius of
curvature tensor we consider the time evolution over long times of the projection onto δr
space of the infinitesimal volume evolving from an initial volume in tangent space spanned

3 As was noted already in [4], the radius of curvature tensor has the dimension of time, rather than length.
However, it can be given the latter dimension by multiplying it by V ≡

√∑
i |vi|2, which in the absence of an

external potential is constant for hard spheres or disks.
4 It can be shown that for almost all choices of T (0), T (t) rapidly becomes independent of T (0) with increasing t.
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by δr(0) and δv(0). Since the projections of all Lyapunov eigenvectors with positive
exponents onto δr space are linearly independent, the size of this projected volume will
grow roughly as the exponent of the sum of the positive Lyapunov exponents. A more
precise statement is

lim
t→∞

1

t
ln

vol δr(t)

vol δr(0)
=
∑
λi>0

λi. (15)

Here vol δr(t) denotes the volume of the projection onto δr space of the evolving
infinitesimal volume in tangent space. Additionally, we have the identity

δv(t) =
dδr(t)

dt
, (16)

which holds, except at the instants of collisions ti, when δr is reflected in a volume-
preserving unitary transformation Ui. Together with equation (14), one obtains

vol δr(t) = vol

⎛
⎝∏

i

Ui lim
Δt→0

ti/Δt−1∏
n=ti−1/Δt

(1 + T (nΔt)Δt)δr(0)

⎞
⎠

=
∏

i

detUi lim
Δt→0

ti/Δt−1∏
n=ti−1/Δt

det(1 + T (nΔt)Δt), (17)

where the first product is over the sequence of all collisions and we employ the convention∏n
i=1 ai ≡ an · · ·a1. This leads to

lim
t→∞

1

t
log

vol δr(t)

vol δr(0)
= 〈TrT 〉. (18)

By comparing equations (15) and (18) one obtains the desired identity5

hKS = 〈TrT 〉. (19)

Within the framework of this article, this identity is very central. It relates the trace of
the inverse radius of curvature tensor directly to the Kolmogorov–Sinai entropy, which we
wish to calculate.

The rest of this paper is therefore dedicated to the description of the eigenvalues
of the inverse radius of curvature tensor. We will consider their dynamics and derive
approximate equations for the time evolution of their distribution. Using these we will
calculate the changes in the distribution of the eigenvalues due to both free streaming
and collisions. From this we obtain approximations for the stationary distribution of
eigenvalues.

This calculation is simplified appreciably by restriction to low densities. We may
assume then that in each collision the elements of the precollisional inverse ROC tensor
involving either of the colliding particles are small, due to their decrease during the free
flight preceding the collision. This assumption is violated only in collisions where one of
the colliding particles has collided shortly before. The fraction of all collisions where this
is the case decreases linearly with density.

5 Although this equation can easily be obtained from the literature [4, 21], we are not aware of it being presented
in this particular form anywhere.
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In section 4 two simple approximation schemes will be presented, based on the
dynamics describing the changes in the distribution of eigenvalues of the inverse ROC
tensor resulting from collisions.

3.2. Dynamics of the inverse radius of curvature tensor

At a given collision, between particles labeled i and j, let S and Q be the dN × dN -
dimensional matrices which perform the transformations of 2S and −2Q on the relative
components in tangent space of the colliding particles and act as zero on all other
independent components of δv or δr, as is described in equations (8)–(11). Note that
Q · (I − S), where I is the dN × dN identity matrix, has d− 1 non-zero eigenvalues and
is symmetric. One of the non-zero eigenvalues of Q · (I − S) is equal to

ξ0 = − 2vij

av̂ij · σ̂
, (20)

with v̂ij the unit vector in the direction of vij . The corresponding eigenvector has
components in the subspaces belonging to the colliding particles of ei = −ej = σ̂ij −
(σ̂ij · v̂′

ij)v̂
′
ij and ek = 0 for k �= i, j along the directions of the other particles. For d > 2

the other d− 2 non-zero eigenvalues are given by

ξ0 = −2vij · σ̂

a
, (21)

with the eigenvector with components ei = −ej normal to both v̂ij and σ̂ and again
ek = 0. The dynamics of the inverse radius of curvature tensor at a collision can be
derived by expressing δv′ in terms of δr′,

δv′ = (I − S) · δv + Q · δr (22)

= [(I − S) · T · (I − S)−1 + Q · (I − S)−1]δr′. (23)

With (I − S)−1 = (I − S), we find for the inverse radius of curvature tensor after the
collision,

T ′ = (I − S) · T · (I − S) + Q · (I − S). (24)

The dynamics during free flight follow from (14) as

T (t+ dt) = [T (t)−1 + I dt]−1. (25)

The eigenvectors of T do not change during a free flight, so its time evolution may be
specified by the evolution of its eigenvalues ξ. From equation (25) one finds that these
satisfy

ξ′(t) = −ξ(t)2 (26)

with solution

ξ(t) =
1

ξ−1(0) + t
. (27)

Note that this may be simplified by considering the dynamics of the radius of curvature
tensor, T −1. For this operator, the drift velocity becomes a constant, 1, irrespective
of the eigenvalue and the choice of time unit. However, in this case the evaluation of
equation (24) becomes more complicated.
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3.3. The eigenvalue distribution at low densities

At low densities the mean free-flight time is given by

τ̄ ≡ 1/ν̄ =
aΓ(d/2)

v02n∗π(d−1)/2
, (28)

with v0 = (kBT/m)1/2 the thermal velocity and n∗ = nad. The probability of a particle
colliding within a free-flight time of order a/v0 (this is the typical order of ξ−1(0)) is of
order n∗ and these events, to a first approximation, may be neglected.

Let us denote a spanning set of the subspace spanned by the eigenvectors with non-
zero eigenvalues of Q·(I−S) for a specific collision as ε1 through εd−1. Because Q·(I−S)
is symmetric, these vectors are both right and left eigenvectors. The corresponding
eigenvalues to linear order in n∗ are given by

ξ = εi · [(I − S) · T · (I − S) + Q · (I − S)] · εi, (29)

≈ εi · [Q · (I − S)] · εi, (30)

since the elements of T connecting these eigenvectors on average are of order n∗ compared
to the elements of Q · (I − S).

Under the approximation of equation (30) the vectors εi only depend on the collision
parameters v̂ij and σ̂, as specified below equations (20) and (21). The remaining
eigenvalues of T ′, to leading order in n∗, can be identified as the eigenvalues of the
projection PT P of the matrix T onto the dN − d + 1-dimensional space orthogonal to
the d − 1 eigenvectors εi, as follows from standard perturbation theory. Hence it follows
that they are interspersed between the precollisional eigenvalues. This is worked out in
appendix A.

These eigenvalues are distributed in roughly the same way as the eigenvalues of the
full matrix T [27, 28]. But, as the eigenvalues of PT P lie in between those of T , the
distribution of these eigenvalues is slightly narrower than that of the eigenvalues of T .
For more details on this see appendix B.

In section 4, we present two approximation schemes. In the first scheme, the narrowing
will be ignored and the approximation will be made that the distribution of eigenvalues of
PT P is the same as that of T . The resulting equation for the distribution of eigenvalues
can be solved analytically. Its solution is expressed in terms of the distribution f0(ξ0) of
the non-zero eigenvalues of Q · (I − S).

In the second scheme, a somewhat more refined approximation is made, in which we
assume that each eigenvector that is changed significantly by the collision, but not created
in it, can be written as a linear combination of exactly two precollisional eigenvectors. Why
this is an improvement will be argued in the discussion, where we will also briefly discuss
possibilities for further improvements.

4. The distribution of eigenvalues of the inverse radius of curvature tensor

4.1. The first approximation scheme

Now that the dynamics of the eigenvalues of the inverse radius of curvature tensor are
specified, we may write down approximate time-evolution equations for the distribution
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of these eigenvalues, f(ξ, t), which is normalized to unity. Let f0(ξ) be the distribution
of non-zero eigenvalues of Q · (I − S), which follows from equations (20) and (21) and
the distribution of the collision parameters vij and σ̂. We equally normalize it to unity.
The simplest approximation for the rate of change of the distribution of eigenvalues of
the inverse radius of curvature tensor is the one announced at the end of section 3: after
a collision, the new distribution of eigenvalues is the same as the old one, except for the
contributions from the non-zero eigenvalues of Q · (I − S). Combining this with the rate
of change resulting from free streaming, one obtains

d

dt
f(ξ, t) =

ν̄(d− 1)

2d
[f0(ξ) − f(ξ, t)] +

∂

∂ξ
[ξ2f(ξ, t)], (31)

where the single-particle collision frequency is given at low density by equation (28). The
first term on the right-hand side is due to collisions. The first part of it is the gain. The
second part is the loss. Its form here is based on our approximation that the shape of the
distribution of the remaining eigenvalues is not changed in a collision. The final term is
due to the drift during free flight.

For time going to infinity, the distribution of eigenvalues becomes stationary. In
other words, the left-hand side of equation (31) becomes zero. Equation (31) then may
be rewritten in a more convenient form, as

f0(ξ) = fstat(ξ) − c

[
ξ2 ∂

∂ξ
fstat(ξ) + 2ξfstat(ξ)

]
, (32)

where

c =
2d

(d− 1)ν̄
. (33)

Solutions to this equation are of the form

fstat(ξ) =

∫ ∞

ξ

dξ0 f0(ξ0)
1

cξ2
exp

(
ξ − ξ0
cξ0ξ

)
. (34)

Notice that for ξ small, as a consequence of equation (20), this reduces to fstat(ξ) =
(const/cξ2) exp(−1/cξ).

From equation (19) it follows that the KS entropy may be obtained directly from the
first moment of fstat(ξ). From equation (34) we find that

hKS =
Nd

c

∫ ∞

0

dξ0 f0(ξ0) exp

(
1

cξ0

)
Γ

(
0,

1

cξ0

)
, (35)

where Γ(, ) denotes the incomplete gamma function, defined by

Γ(x, y) =

∫ ∞

y

dt tx−1e−t = e−y

∫ ∞

0

dt (t+ y)x−1e−t. (36)

At low densities the collision frequency is low, so c is very large and the product
exp(1/(cξ0))Γ(0, 1/(cξ0)), up to corrections of O(n), is equal to ln(cξ0) − γ, where
γ ≈ 0.577 216 is Euler’s constant. The Kolmogorov–Sinai entropy then becomes

hKS ≈ Nν̄(d− 1)

2

{〈
ln
ξ0
ν̄

〉
+ ln

[
2d

(d− 1)

]
− γ

}
. (37)
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We note that here the brackets, instead of a time average, denote an average over the
probability distribution for the new eigenvalues at a collision, in this case f0. This can be
expressed in terms of the joint probability distribution of the collision parameters as

〈g(ξ0)〉 =

∫ ∞

0

dξ0 f0(ξ0)g(ξ0) =

√
βm

πd−1
Γ

(
d

2

)∫
dvi dvj dσ̂ θ(−v̂ij · σ̂)|(vi − vj) · σ̂|

× φM(vi)φM(vj)
1

d− 1

[
g

(
−2vij

av̂ij · σ̂

)
+ (d− 2)g

(
−2vij · σ̂

a

)]
, (38)

where equations (20) and (21) have been substituted and φM(v) is the Maxwell
distribution,

φM(v) =

(
2πkBT

m

)−d/2

exp

(
−m|v|2

2kBT

)
. (39)

The function θ(x) is the unit step function, which vanishes for x < 0 and equals unity for
x ≥ 0. In general, time averages of functions of ξ may be expressed as averages over fstat.

In section 5 the results from equation (37) will be discussed and compared with results
from molecular dynamics simulations.

4.2. The second approximation scheme

In section 4.1, the distribution of eigenvalues after a collision was assumed to be the same
as the one before, except for the non-zero eigenvalues of Q · (I − S). In appendix A it is
shown that in reality these eigenvalues are determined by the equation

∑
i

c2i
ξ − ξi

= 0, (40)

at least in the case of d = 2, when Q · (I − S) has a single non-zero eigenvector6ε, which
can be expressed in terms of precollisional eigenvectors ψi of T with eigenvalues ξi, as
ε =

∑
i ciψi. From equation (40) one sees that precisely one new eigenvalue ξ originates

between each subsequent pair of precollisional ones.
We can divide the ci into two categories, appreciable and almost vanishing. In a

pragmatic way, this distinction can be made by considering as appreciable the set of
largest c2i that sum to all but a small fraction of unity (for instance 0.01). The other c2i ,
then, are almost vanishing. Due to the locality of the interactions, one may argue that, in
the limit of a large system, the number of appreciable ci is small compared to N in most
cases.

For eigenvectors with very small values of ci a new eigenvalue is found very close
to an old one, typically to the left or right of the old one if the nearest eigenvalue with
appreciable ci is to the left respectively to the right of ψi. This may be interpreted in
the following way: in equation (40) one may ignore all eigenvectors with almost vanishing
ci, because their forms and eigenvalues remain essentially unchanged. For the remaining
eigenvalues one retains the property that new eigenvalues are interspersed between the
old ones. This is illustrated in figure 2.

6 The generalization to the case of more than one non-zero eigenvector is also discussed in appendix A.
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Figure 2. An impression of eigenvalues on an interval. The crosses denote
precollisional eigenvalues, the circles and squares postcollisional ones. The bold
and the regular crosses denote eigenvalues corresponding to eigenvectors with an
appreciable and almost vanishing c2

i respectively. The circles and square denote
new eigenvalues. The eigenvalue indicated by the square is approximately the
solution of equation (40) with only the eigenvalues with appreciable c2

i , indicated
with bold crosses, contributing. The circles almost coincide with precollisional
eigenvalues with almost vanishing c2

i .

The number of eigenvectors contributing appreciably to equation (40) varies from
collision to collision, but it is always at least 2, because the two colliding particles cannot
have collided before without intermediate collisions with other particles. The actual
distribution of the number of contributing eigenvectors and the distribution of the values of
the corresponding ci are not easy to determine. In this subsection we make two simplifying
assumptions: firstly, that the number of contributing eigenvectors is always just 2 and,
secondly, that their coefficients c1 and c2 are distributed isotropically, irrespective of the
eigenvalues ξ1 and ξ2. This means that these coefficients can be represented as c1 = cosφ
and c2 = sin φ, with φ distributed uniformly on the unit circle. This assumption implies
that the distribution of the corresponding original eigenvalues ξ1 and ξ2 is the same as the
(as yet unknown) overall distribution of eigenvalues of the inverse radius of curvature
tensor. Obviously, these assumptions are at best approximately correct, but in our
discussion we will make it plausible, on the basis of these assumptions, that a better
approximation can be obtained for the eigenvalue distribution than the one given in
equation (34).

At a collision, the two eigenvalues ξ1 and ξ2 disappear and are replaced by a new
eigenvalue, ξ0, related to Q · (I − S), and the mixed eigenvalue

ξ = ξ1c
2
2 + ξ2c

2
1, (41)

as follows from equation (40). The eigenvector belonging to this mixed eigenvalue is a
linear combination of the two old eigenvectors, orthogonalized to the non-zero eigenvectors
of Q· (I−S). Under these approximations the collision term in equation (31) is modified,
leading to

d

dt
f(ξ, t) =

ν̄(d− 1)

2d
[f0(ξ) + fcoll[f ](ξ, t) − 2f(ξ, t)] +

∂

∂ξ
[ξ2f(ξ, t)], (42)

where fcoll[f ](ξ, t) represents the distribution of the new mixed eigenvalue after the
collision, as a functional of f(ξ, t), the distribution before the collision.

Under the assumptions described above this distribution can be written as

fcoll[f ](ξ, t) =

∫ ∫
dξ′ dξ′′f(ξ′, t)f(ξ′′, t)h(ξ|ξ′, ξ′′). (43)
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Here h(ξ|ξ′, ξ′′) is the distribution of the new eigenvalue ξ between the eigenvalues ξ′ and
ξ′′. The function h assumes the form

h(ξ, |ξ′, ξ′′) =
1

π
√

(ξ − ξ′)(ξ′′ − ξ)
. (44)

From this an equation similar to equation (32) can be derived. One finds

f0(ξ) = 2fstat(ξ) − fcoll[fstat](ξ) − c

[
ξ2 ∂

∂ξ
fstat(ξ) + 2ξfstat(ξ)

]
. (45)

This equation can easily be solved numerically and from its solution a second prediction
of hKS can be obtained. These results are discussed in section 5.

5. Results and discussion

In the previous sections we have developed two closely related analytical schemes that
enable us to calculate approximations for the stationary distribution of eigenvalues of the
inverse radius of curvature tensor. From this distribution we may obtain expressions for
the leading order terms in the density expansion of the KS entropy of a gas of hard disks
or spheres. In particular, the predictions resulting from equation (34) and numerical
solutions of equation (45) may be compared to the results of [11, 21] and results from
molecular dynamics simulations.

In [11] Van Beijeren et al proposed as the approximation for the KS entropy

h
(0)
KS ≈ Nν̄(d− 1)

2

〈
ln ξ0 + ln

(
τi + τj

2

)〉
, (46)

with τi the free-flight time of particle i since the previous collision. Putting this in the
form of equation (1) leads to A = (d− 1)/2 and, after numerical integration,

B(0) ≈
{

0.209 if d = 2

−0.583 if d = 3.
(47)

From molecular dynamics simulations, Posch and co-workers [11, 29] found the
following results for the Kolmogorov–Sinai entropy at low densities:

hnum.
KS =

{
(0.499 ± 0.001)Nν̄

(
− lnnad + 1.366 ± 0.005

)
if d = 2

(1.02 ± 0.02)Nν̄
(
− lnnad + 0.29 ± 0.01

)
if d = 3.

(48)

Comparing the results of equation (37) to those of [11], equation (46), we find that A
is the same, but for B one obtains corrections to equation (47) of the form

ΔB = ln

(
2d

d− 1

)
− γ −

〈
ln

[
ν̄(τi + τj)

2

]〉
. (49)

Dorfman et al already anticipated corrections of ln 4 ≈ 1.386 for d = 2 and ln 3 ≈ 1.098
for d = 3 [30], corresponding to the first term in equation (49).
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In [21], elements of the radius of curvature matrix were estimated by considering the
stretching of the tangent phase space during a sequence of two collisions with free flights;
it was estimated that

BdW =

{
1.47 ± 0.11 if d = 2

0.35 ± 0.08 if d = 3.
(50)

We have evaluated the averages in equation (49) by integrating over the joint
distribution of the collision parameters (see equation (38)). The values for the parameter
B resulting from the first approximation scheme follow as

B(1) =

{
2 − 3

2
γ + ln 2 − 1

2
ln π ≈ 1.255 if d = 2

1
2
− 3

2
γ + ln 3 − 1

2
ln π ≈ 0.160 if d = 3.

(51)

These results are in reasonable agreement with the results from the molecular dynamics
simulations [29], given in equation (48).

More accurate results can be obtained from the second approximation scheme by
numerically solving equation (45). The solution for fstat(ξ) for d = 2, n = 0.001 is
displayed in figure 4. From this, one finds an additional correction to B of

ΔB = 0.086, (52)

regardless of the dimensionality. This leads to a final result for the constant B of

B(2) ≈
{

1.341 if d = 2

0.247 if d = 3.
(53)

This is in good agreement with the results from the molecular dynamics simulations, and
in particular also in better agreement than the results of [21], equation (50).

5.1. Comparing approximation schemes

We now argue as to why the distribution of inverse radius of curvature tensor eigenvalues
obtained from the two-eigenvalue approximation resulting in equation (42) can be
expected to be better than the simpler approximation, equation (31), resulting from
assuming the distribution of interspersed new eigenvalues to be the same as that of the
precollisional eigenvalues. Consider the first two moments of these distributions. In the
simple approximation these are not changed from their precollisional values. Therefore, as
mentioned already, the spectrum does not exhibit any narrowing in collisions, as it should
according to the arguments presented before, which are supported by the calculations
presented in appendix B. In the two-eigenvalue approximation, two eigenvalues ξ1 and
ξ2 are sampled independently from the stationary distribution and replaced by one
interspersed eigenvalue with the value ξ′ = ξ1c

2
2 + ξ2c

2
1, according to equation (41). The

other interspersed eigenvalues retain their precollisional values. The coefficients c1 and c2
are sampled as c1 = cosφ and c2 = sinφ, with φ distributed uniformly on the unit circle.
Hence the average value of ξ′ is the same as that of the precollisional eigenvalues, as should
be the case (see appendix B). From equation (41) and the assumed distribution of the
ci one also easily finds the collisional changes of the second moments. In appendix B it
is shown that, to leading order in 1/n the average of the second moment is reduced at a
collision by a factor 1− (1−A)/n, with A a constant with a value between zero and unity.
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Figure 3. Eigenvalue composition, as obtained from molecular dynamics
simulation of 64 two-dimensional particles at n∗ 0.01 in a square box. The
figure shows an estimate for the average number of particles which contribute
significantly to an eigenvector of the inverse radius of curvature as a function
of the corresponding eigenvalue ξ. This estimate is given by the ratio of the
averages of the second and fourth powers of the component of the eigenvector
in the subspace of a particle. The estimate is somewhat indirect, but it is clear
that it is exact in the special case where the weight is distributed equally over
a set of particles. At this density, the collision frequency is approximately equal
to 0.0354(kBT/m)1/2/a. In order to obtain sufficient information both at high
and at low densities, non-linear binning was used. The plot only shows results
for bins that contain more than 10 points.

This constant, defined in the appendix through
∑n

i=1〈c4i (ξi−〈ξ〉)2〉 = A/n〈
∑n

i=1(ξi−〈ξ〉)2〉,
can be calculated in the two-eigenvalue approximation from the assumed distribution of
c1 and c2 as A2 = 3/4. Since in most cases the new eigenvector will be composed of
more than two precollisional eigenvectors, A2 will be an upper bound to the actual A.
Hence the two-eigenvalue approximation does lead to a narrowing of the spectrum, but
it underestimates its extent. This is especially true in the region where f(ξ) reaches its
maximum, since there the eigenfunctions of the ROC tensor tend to be carried by many
particles, as one can see from figures 3 and 4.

The results may be improved, in principle, by considering larger sets of eigenvectors
for spanning the εi. However, to do this in a sensible way one would need the distribution
of the ci, preferably as a function of all ξi. So far no theory has been developed for this and
it seems no simple task to do so. One could of course study this distribution numerically,
but that would bring one close already to a full numerical study of the eigenvalue spectrum
of the inverse radius of curvature tensor.

In figure 3 we plot numerical results for the average number of particles contributing
to an eigenvalue as a function of ξ, in a system of 64 two-dimensional particles in a square
box with periodic boundary conditions. For ξ larger than the collision frequency, most
eigenvectors are carried by two particles, indicating that these are new eigenvectors εi.
For smaller ξ there is a rapid increase in the average number of particles carrying an
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Figure 4. The distribution of eigenvalues of the inverse radius of curvature tensor
for d = 2 as calculated in this paper compared to results from simulations for
various densities. Dashed and dot–dashed lines show the results of the present
calculations, while solid lines represent the values found in the simulations. The
results for the second approximation scheme are only shown for n∗ = 0.001,
for which we calculated them with great accuracy. Similar curves would be
obtained at the other densities. The simulated systems consist of 64 particles
in square boxes with periodic boundary conditions. Runs were performed of
100 000 collisions, and the eigenvalues of the radius of curvature were calculated
and binned every 64 collisions. In order to obtain sufficient information both
at high and at low densities, non-linear binning was used. The plot only shows
results for bins that contain more than 10 points.

eigenvector, followed by a sharp drop below ξ ≈ 0.25ν ≈ 0.9 × 10−2(kBT/m)1/2/a. The
eigenvectors corresponding to smaller eigenvalues have drifted for a long time, during
which in most cases the particles contributing to them have collided many times. These
eigenvectors are therefore typically carried by more particles. But, remarkably, for very
low eigenvalues the number of particles carrying the eigenvector becomes very close to 1.
This is related to the existence of particles that have not collided for several mean free
times. As a result of subsequent projections normal to new eigenvectors, the weight of
such a particle in the remaining eigenvector can increase from the original value 1/2 to
values close to unity. The contribution of these eigenvectors to the KS entropy is very
small.

We cannot directly translate the data of figure 3 to an estimate of the number of
eigenvectors contributing significantly to a newly generated eigenvector εi. It is clear
though that there is a strong correlation. Since the new εi are always carried by just
the two colliding particles, the components along them of eigenvalues carried by several
particles necessarily have to be small. Hence, many of these are required to reconstruct
any given εi.

Another, more technical approach was based on a calculation of the distribution of
elements of the radius of curvature [21, 31]. The results in the present paper are more
accurate than the results of that calculation, and were obtained in a more elegant way.
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On the other hand, it is not directly clear to us how to further improve the accuracy of the
calculation presented here, nor if the distribution of eigenvalues of the radius of curvature
could be used to calculate specific Lyapunov exponents of the system, as can be done with
the distribution of the elements of the radius of curvature [22].

5.2. The distribution of eigenvalues from a simulation

In our present calculation of the Kolmogorov–Sinai entropy of a dilute hard-sphere gas
the central quantity to be computed is the stationary distribution of eigenvalues of the
inverse radius of curvature tensor. It is interesting to compare the calculated distribution
to results from computer simulations. We have performed MD simulations for a system of
hard disks, in which we calculated the radius of curvature tensor from the numerical values
of δr and δv by making use of equation (14) and diagonalized it at regular time intervals.
The results of these simulations are displayed in figure 4, along with the theoretical
predictions. For a large range of eigenvalues, the calculations follow the simulations closely,
including at very high ξ. At the lowest values of the range studied, there appear some
differences.

It can be seen from figure 4 that the small eigenvalues have a more peaked, and hence
narrower distribution than was found from the calculations. This is due to the fact that
only linear combinations of two eigenvectors were considered for εi. In fact, as can be
seen from figure 3 eigenvectors near the peak are generally carried by more particles and
their contribution to εi, which is carried by only two particles, will therefore have a small
coefficient ci. As argued above, the larger the number of particles carrying an eigenvector,
the smaller the value of A and the stronger the narrowing. And equation (40) reveals that
for given ξ the dynamics are dominated by nearby eigenvalues and their ci. As can be seen
from figure 4, the distribution calculated using linear combinations of two eigenvectors not
only predicts the KS entropy better than the approximation based on no change in the
spectrum of interspersed eigenvalues, but also follows the simulation results more closely
for intermediate eigenvalues.

6. Conclusions

In this paper we have calculated the Kolmogorov–Sinai entropy of systems consisting of
hard disks or spheres from the stationary distribution of the eigenvalues of the inverse
radius of curvature tensor. The dynamics of these eigenvalues consist of free streaming
and collisional effects. The latter are a combination of the generation of new eigenvalues,
with a well-defined distribution, and a slight narrowing of the spectrum of remaining
eigenvalues with respect to the precollisional spectrum. A simple approximation, which
ignores this narrowing and assumes the spectrum to remain unchanged at collisions on
average, already reproduces the numerically observed spectrum quite well, with a fairly
accurate prediction of the KS entropy. A slightly more refined approximation, assuming
that the new eigenvectors consist of just two precollisional ones, both sampled randomly
from the full distribution, does predict a narrowing of the spectrum at collisions, though
it underestimates its extent. This approximation gives quite accurate results for the KS
entropy and it reproduces the eigenvalue spectrum of the inverse radius of curvature tensor
better than the simplest approximation. The remaining underestimation of the narrowing
is strongest and most clearly visible at small eigenvalues.
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In order to improve on the estimates developed here one needs more knowledge on the
decomposition of the new eigenvectors created in a collision into precollisional eigenvectors.
This is highly non-trivial, however.

It should be noted that, though the specific dynamics of the inverse radius of curvature
tensor are different for other high-dimensional systems, such as the high-dimensional
Lorentz gas [12] (which has uniformly convex scatterers), their overall behavior is generic
for all systems consisting of many particles.

Describing the dynamics of the eigenvalues of the inverse radius of curvature tensor
by means of a Fokker–Planck equation seems an attractive approach. In order to do this
one needs expressions for the local drift and diffusion of the eigenvalues due to collisions.
For this again more knowledge is needed of the way new eigenvectors are composed from
old ones. Furthermore, the Fokker–Planck equation is a good approximation for systems
where the dynamics consist of small jumps, while in the present case, large jumps also
happen. However, these will mostly occur for large values of ξ, where the dynamics
is dominated by the drift. Therefore the Fokker–Planck equation may still be a good
approximation.

Finally, the expressions derived here for the dynamics of the inverse radius of curvature
tensor, and the equations for the distribution of its eigenvalues, equations (31) and (42),
can also be used for systems in a stationary non-equilibrium state. In such a state, the
distributions of velocities and collision parameters are different and one has to take this
into account when calculating the averages or the source terms in equations (31) and (42).
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Appendix A. Eigenvalues of a submatrix

Let P1 through Pd−1 be the projection operators which project out the d−1 orthogonal unit
vectors ε1 through εd−1. We are interested in the (distribution of) non-zero eigenvalues
of the submatrix PT P of a symmetric matrix T , with P = P1 · . . . · Pd−1. We shall
determine these by considering the non-zero eigenvalues ξ′i of T̃ ′ = PxT̃ Px, and their
corresponding eigenvectors ηi. The eigenvalues of PT P can now be determined by
applying this procedure d− 1 times, projecting subsequently normal to each of the d− 1
non-vanishing eigenvalues of (I − S) · Q. Thus one obtains matrices T̃ with a decreasing
number of non-zero eigenvalues.

Let ψ1 through ψz be the z normalized eigenvectors of a matrix T̃ with corresponding
eigenvalues ξi. Let us write the unit vector that is to be projected out, εx, and an
eigenvector η of T̃ ′ with eigenvalue ξ′ in terms of the eigenvectors of T̃ ,

εx =
∑

i

ciψi, (A.1)

η =
∑

i

βiψi, (A.2)
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with ∑
i

c2i =
∑

i

β2
i = 1. (A.3)

As η has no component along εx, we may write

ξ′η = ξ′
∑

i

βiψi (A.4)

= T̃ ′η = PxT̃ η = Px

∑
i

βiξiψi (A.5)

=
∑

i

(βiξi − μci)ψi, (A.6)

with μ a constant such that

εx · ξ′η =
∑

i

ci(βiξi − μci) = 0. (A.7)

By taking the inner product of equation (A.6) with a given ψi one finds that

βi = − μci
ξ′ − ξi

. (A.8)

By substituting equation (A.8) into (A.7), and dividing by μ and ξ′, we find that

∑
i

c2i
ξi − ξ′

= 0. (A.9)

From this equation it follows directly that between each subsequent pair ξi and ξi+1 there
must be precisely one solution for ξ′.

Appendix B. Narrowing of the eigenvalue spectrum

In order to investigate the narrowing of the spectrum of eigenvalues as a result of a collision
we rewrite equation (A.9), multiplying it by −

∏
i(ξ

′ − ξi), and find

ξ′n−1 −
∑

i

(1 − c2i )ξiξ
′n−2 +

∑
i<j

(1 − c2i − c2j)ξiξjξ
′n−3 + · · · = 0, (B.1)

where we have made use of equation (A.3). By comparing the coefficient of (ξ′)n−2 to the
coefficient in the eigenvalue equation for ξ′, one immediately obtains

n−1∑
i=1

ξ′i =
n∑

i=1

(1 − c2i )ξi. (B.2)

In section 3 we have found that the eigenvectors εz consist of equal and opposite
components of two arbitrarily determined (colliding) particles along a unit vector that
is distributed isotropically in d-dimensional space. From this it follows immediately that
the average of c2i over many collisions has to be equal to 1/n. If in equation (B.2) we
replace c2i by this average we find that the mean value of the interspersed eigenvalues on
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average is the same as that of the precollisional ones. Note that equations (31) and (42)
both satisfy this property.

Similarly, from the coefficient of (ξ′)n−2 one obtains the identity

n−1∑
i<j

ξ′iξ
′
j =

n∑
i<j

(1 − c2i − c2j )ξiξj . (B.3)

Combining this with equation (B.2) one finds the identity

n−1∑
i=1

〈
(ξ′i − 〈ξ〉)2

〉
=

1

n2

〈(
n∑

i=1

(ξi − 〈ξ〉)
)2〉

+

(
1 − 2

n
− 1

n2

) n∑
i=1

〈(ξi − 〈ξ〉)2〉

+
n∑

i=1

〈c4i (ξi − 〈ξ〉)2〉. (B.4)

Here the brackets indicate an average over many subsequent collisions. We used the
identity

〈c2i c2jξiξj〉 =
1

n2
〈ξiξj〉 i �= j, (B.5)

and we introduced the symbol 〈ξ〉 defined by

〈ξ〉 =
1

n

〈
n∑

i=1

ξi

〉
. (B.6)

To leading order in 1/n the terms proportional to 1/n2 in equation (B.4) may be ignored.
We introduce the constant A defined through

n∑
i=1

〈c4i (ξi − 〈ξ〉)2〉 =
A

n

n∑
i=1

〈(ξi − 〈ξ〉)2〉. (B.7)

Note that A is smaller than 1, since c4i < c2i and 〈c2i 〉 = 1/n. To leading order in 1/n,
combination of equations (B.4) and (B.7) leads to the reduction factor mentioned in
section 5.1. Obviously, the smaller A, the stronger the narrowing. This should apply also
locally, implying stronger narrowing in regions where the eigenvectors tend to be carried
by more particles.

References

[1] Dorfman J R, 1999 An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Lecture Notes in
Physics No. 14) (Cambridge: Cambridge University Press)

[2] Gaspard P, 1998 Chaos, Scattering and Statistical Mechanics (Nonlinear Science Series No. 9) (Cambridge:
Cambridge University Press)

[3] van Zon R, van Beijeren H and Dorfman J R, Kinetic theory of dynamical systems, 2000 Proc. 1998
NATO-ASI Dynamics: Models and Kinetic Methods for Non-equilibrium Many-Body Systems ed
J Karkheck (Dordrecht: Kluwer) p 131

[4] van Zon R, van Beijeren H and Dorfman J R, Kinetic theory estimates for the Kolmogorov–Sinai entropy
and the Lyapunov exponents for dilute, hard-ball gases and for dilute, random Lorentz gases, 2000 Hard
Ball Systems and the Lorentz Gas (Encyclopedia of Mathematical Sciences) ed D Szasz (Berlin: Springer)

[5] Gaspard P and Nicolis G, Transport properties, Lyapunov exponents and entropy per unit time, 1990 Phys.
Rev. Lett. 65 1693

doi:10.1088/1742-5468/2011/08/P08012 19

http://dx.doi.org/10.1103/PhysRevLett.65.1693
http://dx.doi.org/10.1088/1742-5468/2011/08/P08012


J.S
tat.M

ech.
(2011)

P
08012

A radius of curvature approach to the Kolmogorov–Sinai entropy of dilute hard particles in equilibrium

[6] Dorfman R J and Gaspard P, Chaotic scattering theory of transport and reaction-rate coefficients, 1995
Phys. Rev. E 51 28

[7] Dorfman R J and Gaspard P, Chaotic scattering theory, thermodynamic formalism, and transport
coefficients, 1995 Phys. Rev. E 52 3525

[8] van Beijeren H and Dorfman J R, Lyapunov exponents and KS entropy for the Lorentz gas at low densities ,
1995 Phys. Rev. Lett. 74 4412

van Beijeren H and Dorfman J R, 1996 Phys. Rev. Lett. 76 3238 (plus erratum)
[9] Latz A, van Beijeren H and Dorfman J R, Lyapunov spectrum and the conjugate pairing rule for a

thermostated random Lorentz gas: kinetic theory , 1997 Phys. Rev. Lett. 78 207
[10] Dellago C and Posch H A, Lyapunov spectrum and the conjugate pairing rule for a thermostated random

Lorentz gas: numerical simulations, 1997 Phys. Rev. Lett. 78 211
[11] van Beijeren H, Dorfman J R, Posch H A and Dellago C, The Kolmogorov–Sinai entropy for dilute gases in

equilibrium, 1997 Phys. Rev. E 56 5272
[12] de Wijn A S and van Beijeren H, The Lyapunov spectrum of the many-dimensional dilute random Lorentz

gas, 2004 Phys. Rev. E 70 036209
[13] Posch H A and Hirschl R, Simulations of billiards and of hard body fluids, 2000 Hard Ball Systems and the

Lorentz Gas (Encyclopedia of Mathematical Sciences) vol 101, ed D Szasz (New York: Springer) p 280
[14] Forster C, Hirschl R, Posch H A and Hoover W G, Perturbed phase-space dynamics of hard-disk fluids, 2004

Physica D 187 294
[15] Eckmann J-P, Forster C, Posch H A and Zabey E, Lyapunov modes in hard-disk systems, 2005 J. Stat.

Phys. 118 813 [arXiv:nlin.CD/0404007]
[16] van Zon R, van Beijeren H and Dellago C, Largest Lyapunov exponent for many particle systems at low

densities, 1998 Phys. Rev. Lett. 80 2035
[17] van Zon R, Chaos in dilute hard sphere gases in and out of equilibrium, 2000 PhD Thesis Utrecht

University
[18] van Zon R and van Beijeren H, Front propagation techniques to calculate the largest Lyapunov exponent of

dilute hard disk gases, 2002 J. Stat. Phys. 109 641
[19] McNamara S and Mareschal M, On the origin of the hydrodynamic Lyapunov modes, 2001 Phys. Rev. E

64 051103
[20] de Wijn A S and van Beijeren H, Goldstone modes in Lyapunov spectra of hard sphere systems, 2004 Phys.

Rev. E 70 016207
[21] de Wijn A S, The Kolmogorov–Sinai entropy for dilute hard particles in equilibrium, 2005 Phys. Rev. E

71 046211
[22] de Wijn A S, Lyapunov spectra of billiards with cylindrical scatterers: comparison with many-particle

systems, 2005 Phys. Rev. E 72 026216
[23] Abraham R and Marsden J E, 1978 Foundations of Mechanics (New York: Benjamin)
[24] Dragt A J, 1978 Lectures on Nonlinear Orbit Dynamics vol 87 (Woodbury, NY: American Institute of

Physics)
[25] Dellago C, Posch H A and Hoover W G, Lyapunov instability in a system of hard disks in equilibrium and

nonequilibrium steady states, 1996 Phys. Rev. E 53 1485
[26] Sinai Ya G, 1970 Russ. Math. Surv. 25 137

Bunimovich L A and Sinai Ya G, 1980 Commun. Math. Phys. 78 479
Bunimovich L A, Sinai Ya G and Chernov N I, 1990 Russ. Math. Surv. 45 105
Sinai Ya G and Krylov N N, 1979 Works on the Foundations of Statistical Mechanics (Princeton, NJ:

Princeton University Press) p 239
Sinai Ya G (ed), 1991 Dynamical Systems: Collection of Papers (Singapore: World Scientific)

[27] Crisanti A, Paladin G and Vulpiani A, 1993 Products of Random Matrices in Statistical Physics
(New York: Springer)

[28] Mehta M L, 1991 Random Matrices 2nd edn (San Diego, CA: Academic)
[29] Forster C and Posch H A, 2004 private communication
[30] Dorfman J R, Latz A and van Beijeren H, Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy methods for

sums of Lyapunov exponents for dilute gases, 1998 Chaos 8 444 [arXiv:chao-dyn/9801014]
[31] de Wijn A S, Chaos in systems with many degrees of freedom, 2004 PhD Thesis Utrecht University

doi:10.1088/1742-5468/2011/08/P08012 20

http://dx.doi.org/10.1103/PhysRevE.51.28
http://dx.doi.org/10.1103/PhysRevE.52.3525
http://dx.doi.org/10.1103/PhysRevLett.74.4412
http://dx.doi.org/10.1103/PhysRevLett.76.3238
http://dx.doi.org/10.1103/PhysRevLett.78.207
http://dx.doi.org/10.1103/PhysRevLett.78.211
http://dx.doi.org/10.1103/PhysRevE.56.5272
http://dx.doi.org/10.1103/PhysRevE.70.036209
http://dx.doi.org/10.1016/j.physd.2003.09.013
http://dx.doi.org/10.1007/s10955-004-2687-4
http://arxiv.org/abs/nlin.CD/0404007
http://dx.doi.org/10.1103/PhysRevLett.80.2035
http://dx.doi.org/10.1023/A:1020414615453
http://dx.doi.org/10.1103/PhysRevE.64.051103
http://dx.doi.org/10.1103/PhysRevE.70.016207
http://dx.doi.org/10.1103/PhysRevE.71.046211
http://dx.doi.org/10.1103/PhysRevE.72.026216
http://dx.doi.org/10.1103/PhysRevE.53.1485
http://dx.doi.org/10.1070/RM1970v025n02ABEH003794
http://dx.doi.org/10.1007/BF02046760
http://dx.doi.org/10.1070/RM1990v045n03ABEH002355
http://dx.doi.org/10.1063/1.166325
http://arxiv.org/abs/chao-dyn/9801014
http://dx.doi.org/10.1088/1742-5468/2011/08/P08012

