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Recent atomic force microscope �AFM� experiments have shown that the low-friction sliding of incommen-
surate graphite flakes on graphite can be destroyed by torque-induced rotations. Here we theoretically inves-
tigate the stability of superlubric sliding against rotations of the flake. We find that the occurrence of superlu-
bric motion critically depends on the physical parameters and on the experimental conditions: particular scan
lines, thermal fluctuations, and high loading forces can destroy the stability of superlubric orbits. We find that
the optimal conditions to achieve superlubric sliding are given by large flakes, low temperature, and low loads,
as well as scanning velocities higher than those used in AFM experiments.
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I. INTRODUCTION

Recent years have witnessed a surge of interest in under-
standing the microscopic origin of friction as a result of the
increased control in surface preparation, the developments of
local probes like the atomic force microscopes �AFM� and
scanning tunneling microscopes �STM� and due to the inter-
est for possible applications in nanotechnology. One of the
goals of this research is to understand whether extremely low
friction can be obtained by an appropriate choice of the slid-
ing conditions. This paper examines theoretically the sliding
of graphite flakes on a graphite substrate, one of the proto-
type systems in this field. For this system, it has recently
been shown that the low-friction “superlubric” sliding re-
ported previously for flakes with incommensurate contact
with the substrate �1� is always destroyed by rotations of the
sliding flake �2�, leading to a locking in a commensurate
state with high friction and slip-stick behavior. Numerical
simulations �2� carried out for the experimental conditions
�extremely low velocities, about 30 nm/s� confirm this find-
ing. It is intriguing to ascertain whether there might be con-
ditions that avoid the rotation and locking in the high-friction
commensurate orientation.

Some important concepts of friction at the atomic scale
are based on the Frenkel Kontorova �FK� model �3� that
describes the sliding surface as a harmonic chain of lattice
spacing a in interaction with a rigid periodic substrate with
period b. For incommensurate values of the ratio a /b, Pey-
rard and Aubry �4� have shown that, below a critical value of
the coupling to the periodic potential, the chain can be dis-
placed on the substrate by an infinitesimally small force,
namely, the system displays a vanishing static friction force.
Later, Shinjo and Hirano �5� predicted that for incommensu-
rate contacts also the kinetic friction would vanish and called
this effect superlubricity. The experimental STM �6� and
AFM studies �1� showing a drop of the friction force in go-
ing from commensurate to incommensurate contacts seemed
to confirm the prediction of superlubricity. Theoretical work
�7� has shown that the prediction of frictionless sliding also

at high velocities of Ref. �6� is oversimplified and does not
apply in general, although dissipative mechanisms become
less and less effective in the limit of vanishing velocities.
Moreover, the term superlubricity has been criticized in sev-
eral papers �8,9� because it suggests a transition to zero fric-
tion which can be compared to superfluidity or superconduc-
tivity, whereas there is no threshold value of the velocity
below which the kinetic friction vanishes. Nevertheless, the
term superlubricity has become very popular and is used to
describe low friction in the quasistatic limit accessible by
AFM.

Here, we study the driven dynamics of a finite graphite
flake on a graphite surface. The flake-surface interaction is
modeled with a realistic static potential but vibrations of the
flake are not taken into account and those of the substrate are
represented by an effective friction coefficient proportional
to velocity. This defines a deterministic nonlinear dynamical
system with four degrees of freedom that can be studied by
numerical simulations and approximate analytical models,
allowing us to study the stability of superlubric sliding.

For a commensurate contact, we always find a stick-slip
behavior with high friction. Conversely, for an incommensu-
rate contact, we find two types of qualitatively different be-
havior. After an initial short period, the flake either rotates
and locks into a commensurate orientation or it remains in-
commensurate and slides with extremely low friction. This
behavior is critically dependent on the initial conditions, as
expected for a strongly nonlinear problem. A simple dynami-
cal system that captures the essential physics and for which
the stability analysis can be done analytically explains the
observed behavior. We then examine by numerical simula-
tions the stability of the periodic orbits corresponding to in-
commensurate sliding against thermal fluctuations and other
perturbations.

In Sec. II, we describe the model of the structure and
interactions and the details of the numerical simulations. In
Sec. III, we show that periodic orbits corresponding to either
commensurate or incommensurate sliding appear for differ-
ent initial conditions. In Sec. IV, we propose a simplified
model for which we can perform analytically the stability
analysis of these orbits. The robustness of the stability of
periodic orbits against different types of perturbations is pre-
sented in Sec. V. Finally we conclude with a summary and
perspectives in Sec. VI.
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II. MODEL

We study the dynamics of rigid graphite flakes, lying in
the x−y plane parallel to the substrate as shown in Fig. 1.
Atoms are kept at the equilibrium interatomic spacing a
=1.42 Å in a hexagonal lattice for both the flake and sub-
strate. By changing the orientation of the flake onto the hex-
agonal substrate the contact is either commensurate �Fig. 1,
left� or incommensurate �Fig. 1, right�. We consider only
rotations around the z axis that keep the flake parallel to the
substrate. The center of mass of the flake is pulled along the
indicated scan lines by a support moving at constant velocity
vs= �vs ,0 ,0�. The flake therefore has four degrees of
freedom: the coordinates of the center of mass, r= �x ,y ,z�
and the orientation �. The corresponding velocities are
v= �vx ,vy ,vz� and �. The phase space has eight dimensions.

We calculate the force and the torque acting on the center
of mass from the interaction that each atom in the flake has
with each atom in the substrate. The total potential energy of
the flake due to interactions with atoms of the substrate can
be written as

V�r,�� = �
i

�
j

VC��ri − R j�� , �1�

where i goes over all flake atoms, and j over all substrate
atoms and VC�r� is the interaction between one flake atom
and one substrate atom at distance r. The positions of the
substrate atoms R j = �Xj ,Y j ,Zj� are given by a hexagonal lat-
tice, and the positions of flake atoms ri= �xi ,yi ,zi� are func-
tions of the position of the center of mass r= �x ,y ,z� and of
the orientation angle � �see Fig. 1�. In the simulations de-
scribed in this paper, we use the atom-atom interaction po-
tential VLR�r� of Ref. �10� that describes nonbonded interac-

tions of carbon. The potential has a range of 6 Å.
The support representing the AFM cantilever drives the

flake, with a force given by

Fs�r,t� = − c�x − xs�t�
y − ys�t�
0

� + �0

0

− Fload
� , �2�

where t is the time, �xs ,ys ,zs�= �xs�0�+vst ,ys�0� ,zs� is the
position of the support, c�=1 nN /nm� is the coupling con-
stant between the support and the center of mass of the flake,
and Fload is the load force in the negative z direction. The
coupling to the phonon modes of the substrate can be mod-
eled by a viscous friction term that dampens the motion of
the flake, with a force and torque given by

Ff�v� = − �Mv , �3�

Tf��� = − �I� , �4�

where M is the total mass of the flake, I is the moment of
inertia for rotations around the center of mass along the z
axis, and � �=1 /ps� is the viscous friction constant. Note that
for a rigid flake, the damping of the linear velocity directly
determines the damping of both the center of mass and the
rotation.

The equations of motion are

Mr̈ = −
�V�r,��

�r
+ Fs�r,t� + Ff�v� , �5�

I�̈ = −
�V�r,��

��
+ Tf��� . �6�

The rotational symmetry of the flake implies that

V�r,�� = V	r,
�

3
+ �
 . �7�

and the periodicity of the substrate gives

V�r,�� = V�r + a,�� , �8�

where a is any vector which generates a translation under
which the lattice is invariant. The flake-substrate system also
has symmetry for reflections in the yz plane

V�r,�� = V„�− x,y,z�,� − �… . �9�

In our numerical simulations, we solve the equations of mo-
tion using the velocity Verlet algorithm with damping and
whenever the temperature is nonzero, a Langevin noise term
is added �2,11�.

III. PERIODIC ORBITS

The solutions of Eqs. �5� and �6� at T=0 are strongly
dependent on the initial conditions, due to the nonlinearities
of the interaction forces. In Fig. 2 �top left�, we show two
trajectories obtained for exactly the same conditions �same
load, support velocity, and scan line� apart from different
initial angular velocity. We can see that starting from an ori-

φ=0°
φ=
30°

FIG. 1. Top view of the geometry of a graphite flake of 24 atoms
on the substrate, in a commensurate orientation �left, mismatch
angle �=0� and incommensurate orientation �right, �=30°�. The
open circles represent substrate atoms, while the closed circles are
flake atoms. The scan lines used in this paper are along the x axis
and shown from top to bottom: scan line 1 �solid line�, 2 �dashed
line�, 3 �dotted line�, and 4 �dot-dashed line�. The scan lines are
separated by a distance a /4. Due to the symmetry of the lattice, the
range between scan lines 1 and 4 fully describes all scan lines in
this direction. The scan line at a distance a /4 below scan line 4 is
again equivalent to scan line 3. Note that in a symmetric hexagonal
flake, the center of mass does not correspond to the position of an
atom.
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entation near the incommensurate orientation, � either drops
to the commensurate �=0 value, or oscillates around, ap-
proximately, 26°. A similar trajectory on another scan line
converges to 30°. The orientation converges to a stable value
within a few lattice periods. This result shows that several
periodic orbits may be stable. The corresponding behavior of
x�t�, shown in Fig. 2 �top right�, for the commensurate case
�=0 is steplike, which is typical of stick-slip motion. For the
incommensurate cases �=26° ,30°, the flake follows the
support closely. The difference between commensurate and
incommensurate orbits is also evident by looking at the tra-
jectory in the xy plane, shown at the bottom left of Fig. 2. In
the case of �=0, the center of mass jumps quickly from one
lattice site to another, where it performs some oscillations
before jumping again. The incommensurate motion at the
same scan line is smoother and the orbit at �=30° performs
a regular zigzag motion. The lateral force, also displayed in
Fig. 2 �right bottom�, which shows stick-slip motion for the
commensurate trajectory, drops for �=26° and �=30° to an
average friction force close to that of a flat surface ��Mvs
=0.0153 nN�, 0.0278 and 0.0316 nN, respectively. The fric-
tion of the commensurate flake, by comparison, is large,
0.1018 nN.

In rare cases, particularly at very high load, where the
nonlinearities are increased, periodic trajectories with a pe-
riod longer than one lattice period as well as chaotic trajec-
tories exist. Examples of a period 6 periodic orbit and a
chaotic orbit are displayed in Fig. 3. Nevertheless, even in
these trajectories, the orientation remains roughly constant.

In Fig. 4, the stable periodic orbits are plotted as a func-
tion of ys, ranging between scan line 1 and 4, for the system
of Fig. 2. The commensurate periodic orbit at �=0 is always

stable, regardless of the scan line. Between scan lines 3 and
4, the incommensurate orbit at ��26° becomes unstable,
and the one at ��30° becomes stable.

As the number of atoms increases, the interaction with the
substrate becomes more complicated and the number of pe-
riodic orbits increases. For square flakes on a square lattice,
the number of periodic orbits increases linearly with the di-
ameter of the flake �12�. In Fig. 5, bifurcation diagrams simi-
lar to Fig. 4 are shown for flakes of different sizes. The
number of stable periodic orbits increases. Additionally,
there is a switch-over region around scan line 3, where the
stable incommensurate orbits become unstable, and the un-
stable incommensurate orbits become stable.

Experimentally �2�, it was reported that the superlubric
behavior of flakes of approximately 100 atoms lasted for
about 40 scan lines or a distance ys of about 7 Å, about five
times the distance between scan lines 1 and 4. This compares
very well with the results for N=96, where we see that start-
ing, for instance on scan line 4 and moving toward scan line
1, the flake rotates from the stable periodic orbit at 30° to the
one at 23°. After this, due to the symmetry of the lattice, the
scan moves back from scan line 1 to scan line 4, decreasing
the mismatch angle to 19° �which has lower energy than
30°�. After 3a�4.3 Å distance in the y direction, the flake
locks in the commensurate �=0 state. In absence of thermal
fluctuations, the decay to the commensurate state is a geo-
metric effect, depending only on the structure of the interac-
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FIG. 2. �Color online� Three typical trajectories for a 24-atom
flake subjected to Fload=20 nN, vs=32 m /s. All three converge to
stable periodic orbits at approximately constant ���0. The trajec-
tories converging to �0�0° and �0�26° are for scan line 3, but
have different initial angular velocity, and the trajectory converging
to �0�30° is for scan line 4. From left to right and top to bottom:
�a� the mismatch angle as a function of time, �b� the position as a
function of time once the trajectories have converged to the periodic
orbits, �c� the trajectories on the surface for the same interval, and
�d� the friction force Fs.
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FIG. 3. Examples of more complicated trajectories of a 24-atom
flake: �a� a periodic trajectory with a longer period, in this case 6
lattice periods, for Fload=30 nN at scan line 3 and �b� a chaotic
trajectory for Fload=40 nN at scan line 1. All other conditions are
the same as for the trajectories plotted in Fig. 2.

FIG. 4. A bifurcation diagram of the stable periodic orbits as a
function of the parameter y for N=24 and Fload=20 nN. The data
was obtained by doing a large number of simulations with a wide
range of initial conditions. The plotted points are the set of final
angles. Clearly visible between scan lines 3 and 4 are the points at
which the �0�26° periodic orbit becomes unstable and the �0

�30° periodic orbit becomes stable.
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tion. Each periodic orbit leads to a different friction force,
and so the observation of steps in the friction force going
from one scan line to another, could be related to the size and
symmetry of the flake.

IV. STABILITY ANALYSIS AND SIMPLIFIED MODELS

Although we consider the flake as a rigid object with only
four degrees of freedom, the system is still too complicated
to perform the stability analysis analytically. However, a pos-
sible simplification is suggested by the shape of the potential
energy V�r ,��. In Fig. 6, we show V as a function of x and
� for constant values of z given by the average of the values
found in simulations with a load of 20 nN, and y defined by
the four scan lines. One can see that the potential is a peri-
odic function of x with an amplitude that depends on �.
Therefore, a good description of the system is provided by a
simplified one-dimensional model with only two degrees of
freedom: the position along the scan line, x, and the orienta-
tion, �. This model is fully described by the viscous friction
coefficient �, support velocity vs, initial support position xs

0,
mass M, moment of inertia I, and a simplified potential
V�x ,��. The essential dynamics of the system, the existence
of commensurate and incommensurate sliding is preserved in
the simplified model, which we present in this section.

A. Equations of motion

We write the equations of motion of the simplified system
as a dynamical system of first-order differential equations,

ẋ = vx, �10�

Mv̇x = −
�V�x,��

�x
− c�x − tvs − xs0� − �Mvx, �11�

�̇ = � , �12�

I�̇ = −
�V�x,��

��
− �I� . �13�

Moreover, the symmetries of V�r ,�� in Eqs. �7�–�9� im-
ply that

V�x,�� = V	x,
�

3
+ �
 , �14�

V�x,�� = V�x + l,�� , �15�

V�x,�� = V�− x,� − �� , �16�

where l=a�3.

Specific potential

A good representation of V�x ,�� for a given scan line �y
constant� is given by

V�x,�� = U��� + W���cos	2�x

l

 , �17�

where U��� and W��� are both smooth functions that repre-
sent the average value of the potential energy and the ampli-
tude, respectively.

The symmetries of the dynamics in Eqs. �14�–�16� imply
that

U��� = U�− �� = U	�

3
+ �
 , �18�

FIG. 5. The plot of Fig. 4 repeated for �a� various sixfold sym-
metric flakes of �b� 54, �c� 96, �d� 150, and �e� 216 atoms. Larger
flakes have more stable periodic orbits. The lone point in the bifur-
cation diagram for N=96 near scan line 4 at �0�12° indicates that
the �0�12° periodic orbit is still stable there, but has such a small
basin of attraction that the spacing between the initial conditions
used to calculate this bifurcation diagram is not fine enough to
detect it.

(a)

0.6150.3690.123
x (nm)

0 10 20 30φ (deg)

3.6
3.8

4
4.2

V (10-19 J) (b)

0.6150.3690.123 x (nm)

0 10 20 30φ (deg)

3.6
3.8

4
4.2

V (10-19 J)

(c)

0.6150.3690.123
x (nm)

0 10 20 30φ (deg)

3.6
3.8

4
4.2

V (10-19 J)

(d)

0.6150.3690.123
x (nm)

0 10 20 30φ (deg)

3.6
3.8

4
4.2

V (10-19 J)

FIG. 6. �Color online� The potential energy V�r ,�� of a 24-atom
flake as a function of the mismatch angle � and position x along the
trajectory of the support, for constant z at the average value belong-
ing to a load of 20 nN, and y corresponding to scan lines �a� 1, �b�
2, �c� 3, and �d� 4. Due to the symmetries of the system given in
Eqs. �14�–�16�, the dependence on � is determined by the behavior
between 0 and 30°.

DE WIJN, FUSCO, AND FASOLINO PHYSICAL REVIEW E 81, 046105 �2010�

046105-4



W��� = W�− �� = W	�

3
+ �
 . �19�

In turn, these equations imply that U and W have extrema in
�=�0=0 , � /6. In Figs. 7 and 8, U and W, are shown for
flakes of 24 and 216 atoms. It is evident in Fig. 7 that there
is an extremum of both U and W at �=0. The structure of the
other extremum, close to 30°, can be seen from the four
enlargements. Besides the extremum at �=30° for all scan
lines there is another extremum of both U and W at about
26°. In Fig. 8, for a larger flake, U and W have more ex-
trema, but they still coincide. In Ref. �12�, it is shown for a
simpler system, square flakes on a square lattice, that this is

a general property: for square flakes on square lattices the
extrema of U and W at any orientation coincide approxi-
mately for all flake sizes.

Since the torque, given by Eq. �13�, vanishes for the val-
ues of � that give extrema of U and W and �=0, these
conditions define a two-dimensional invariant manifold of
the dynamics. The number of extrema of U and W and, con-
sequently, the number of invariant manifolds, grows with the
size of the flake.

B. Stability

We consider a general potential V�x ,��, which has an
invariant manifold at �=�0, i.e.,

 �V�x,��
��


�=�0

= 0, �20�

for all x. Now that we have identified the invariant manifold,
we consider the dynamics in its vicinity in order to study the
stability.

Near the invariant manifold, the torque is small, and so
the time scales of � and �, �Eqs. �12� and �13�� are much
longer than those of x and vx �Eqs. �10� and �11��. Because of
this, for the purpose of investigating the stability of the dy-
namics near the invariant manifold, the torque can be re-
placed by its time average. Note that this separation of time
scales is only valid near the invariant manifold, namely, if �
remains close to �0 and � is close to 0.

If the manifold is stable, then initial conditions close to it
converge toward it. We therefore consider the growth rates of
small perturbations �� and �� of � and �, the Lyapunov
exponents. From Eqs. �12� and �13�, we find

��̇ = �� , �21�

I��̇ =− ��
�

��
� �V�x,��

��
�

t


�=�0

− �I�� . �22�

The time average can be interchanged with the derivative
with respect to � because perturbations in x and � decouple
to first order. One may write

	��̇

��̇

 = �0 1

−
1

I� �2V�x,��
��2 

�=�0

�
t

− �� · 	��

��



�23�

=A · 	��

��

 . �24�

As the matrix A is constant, the Lyapunov exponents asso-
ciated with perturbations in � and � are simply equal to its
eigenvalues,
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FIG. 7. The �a� offset U��� and amplitude �b� W��� of the
potential V�x ,�� as a function of � for the same case displayed in
Fig. 6. The region near �=30° is enlarged separately for scan lines
�c� 1, �d� 2, �e� 3, and �f� 4. U and W were obtained from a Fourier
transform of V with respect to x over 492 points for each �. The
extrema of U and W coincide at �=�0, which implies the existence
of an invariant manifold �=�0 , �=0 with �0=0° ,26° or 30°.
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FIG. 8. The �a� offset U��� and �b� amplitude W��� for a flake
of 216 atoms. The extrema of U coincide with the maxima of W,
and the nodes of W correspond to a constant value of U. There are
more extrema than for the flake of 24 atoms, and therefore more
stable and unstable incommensurate periodic orbits.
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�� = −
1

2
� �

1

2
��2 −

4

I� �2V�x,��
��2 

�=�0

�
t

. �25�

The invariant manifold is stable if all �in this case 2�
Lyapunov exponents associated with perturbations of it have
real components smaller than 0.

As the real component of the square root in Eq. �25� is
positive or 0, �−	�+ is the smallest Lyapunov exponent
�i.e., has the smallest real component�. For stability analysis,
it therefore suffices to consider �+. If the argument of the
square root in Eq. �25� is smaller than �2, then the real com-
ponents of both �− and �+ are negative. This is the case if

� �2V�x,��
��2 

�=�0

�
t


 0, �26�

i.e., the time average of the potential energy must be at a
minimum.

Using Eq. �17�, Eq. �26� can be rewritten to read

�2U���
��2 + �2W���

��2 
�=�0

�cos	2�x

l

�

t,�=�0


 0. �27�

The stability thus depends on U and W, and how much time
the particle spends near the minima of the potential, where
the cosine is negative.

In stick-slip motion, the particle spends most of its time in
the minima of the potential, i.e., where the cosine is smaller
than 0 �see Fig. 2�. If the motion is truly superlubric, then the
particle spends about the same time in the minima as it does
in the maxima. If the motion is nearly superlubric, then the
particle spends most of its time in the minima. Hence, for
realistic cases, �cos�t�0.

If the offset of the potential, U���, has a minimum at �0
it contributes positively toward the stability. Similarly, if the
amplitude W��� is at a maximum at �0, because the first
derivative is multiplied by a negative number, �cos�t, it en-
hances the stability. A minimum of U and maximum of W
therefore always lead to stability, whereas a maximum of U
and minimum of W always leads to instability. If both are at
a maximum, or both are at a minimum at �0, then the stabil-
ity is not directly obvious.

Comparison with simulations

The analysis of Sec. IV B compares very well with the
results of numerical simulations at T=0 K. The stability of
the commensurate and incommensurate states can be deter-
mined by looking at the behavior of the average potential
energy U and amplitude W, shown in Figs. 7 and 8.

We examine first the 24-atom system of Figs. 2 and 4, for
which U and W are reported in Fig. 7. For scan line 1 and 2,
the minimum of U at �=26° coincides with a maximum of
W, and is therefore stable. This is consistent with the simu-
lation results for scan lines 1 and 2, shown in Fig. 4, where
we see a stable orbit at 26°. At these scan lines, for �=30° U
has a maximum and W has a minimum, leading to instability.
At �=0, there is a maximum in U, but also in W. However,
the second derivatives of U and W are very nearly the same

apart from the sign, and �cos�t increases with decreasing am-
plitude, so ��2V /��2�t is positive, and the incommensurate
state is stable.

For scan lines 3 and 4, at 0° the minimum of U coincides
with a maximum in W, leading to a stable commensurate
state. Similarly, at scan line 4, the incommensurate state at
�=30° is stable, while the state at �=26° is unstable. For
scan line 3, the stability of the incommensurate states is more
complicated, as U and W both have maxima around �=26°
and minima at �=30°. However, the second derivatives of U
and W for both states are approximately the same, with op-
posite sign. Additionally, the amplitude for both states is ap-
proximately the same, so �cos�t should be the same as well.
The crucial quantity for stability, ��2V /��2�t, should there-
fore be nearly the same for the two states, except for the sign,
which is opposite. One of the incommensurate states is there-
fore stable, while the other is unstable, though from U and W
it is not directly clear which is which. In Fig. 2, the stable
incommensurate state for scan line 3 is shown at �=26° and
for scan line 4 at �=30°. The existence of a switch-over scan
line can be seen in the simulation results in Fig. 4, and is
clearly critical for all sizes, as shown in Fig. 5. Its existence
for any flake size can be demonstrated analytically for square
flakes on square lattices �12�.

In Fig. 8, U and W are plotted for a larger flake of 216
atoms. Because of the larger size of the flake, U and W have
more extrema and therefore there are more periodic orbits.
The stable periodic orbits in the simulations, shown in Fig. 5
�bottom right�, coincide with the extrema. Their stability is
also consistent with calculations based on U and W.

V. ROBUSTNESS OF THE SUPERLUBRIC SLIDING

The analysis presented in Sec. IV shows that incommen-
surate �superlubric� sliding may exist. However, the exis-
tence of stable incommensurate periodic orbits does not nec-
essarily mean that they can be easily observed in
experiments. The conditions that lead to stability may not be
experimentally accessible. Furthermore, the stability may be
very weak, causing very slow convergence toward the peri-
odic orbit, or the basins of attraction of the incommensurate
periodic orbits �the set of initial conditions that converge
toward them� may be small. In this section, we examine
separately the robustness of the incommensurate superlubric
solutions against several types of perturbations.

A. Temperature

In Fig. 9, we show slices of the phase space which contain
the stable incommensurate periodic orbits of the full three-
dimensional system. For each scan line, we investigate the
basin of attraction by performing numerical simulations at
T=0 and looking at the asymptotic state of the flake as a
function of the initial orientation and angular momentum. If
the basin of attraction is small, the periodic orbits can easily
be destroyed by thermal fluctuations, which bring the system
outside the basin of attraction of the incommensurate orbits,
and into that of the commensurate orbit. The range of initial
angular velocities plotted in Fig. 9 is 3�kbTr /M, where Tr is
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room temperature, 293 K, and kb is Boltzmann’s constant.
This is roughly the range that is thermally accessible at room
temperature. The basin of attraction of the incommensurate
periodic orbits is smaller than this range, indicating that at
room temperature thermal fluctuations may perturb the in-
commensurate state sufficiently to cause it to decay to the
commensurate state, which has lower energy. Especially scan
line 3, with its weak stability and scan line 4, at which the
incommensurate state only has a small basin of attraction �as
is shown in Fig. 9�, are very sensitive to thermal fluctuations.

To examine the effect of temperature explicitly we con-
duct Langevin simulations with temperatures ranging from 5
to 300 K. Starting from initial conditions on the incommen-
surate periodic orbit, simulated systems were subjected to

thermal fluctuations for a period of about 100 lattice periods
and the final angle was recorded. The results are plotted in
Fig. 10. At scan line 3, the incommensurate state is the least
robust against temperature and the incommensurate state de-
cays already at 5 K. However, thermal fluctuations are not
the only source of energy in this system, because the moving
support drives the flake at velocities that are not negligible
compared to thermal velocities, therefore supplying amounts
of energy significant compared to kBT. The effect of tempera-
ture is thus possibly overestimated in these simulations.

B. Scan line

From the size of the basins of attraction in Fig. 9 and the
robustness against thermal fluctuations displayed in Fig. 10,

FIG. 9. �Color online� Cross sections of the phase space, including the basin of attraction of the incommensurate stable periodic orbits,
which are at ��26° , �=0, for scan lines �a� 1, �b� 2, �c� 3, and ��30° , �=0 for �d� scan line 4. The flake has 24 atoms and Fload

=20 nN, vs=32 m /s. The final state of the flake is plotted as a function of the initial orientation and angular momentum. The initial
position and velocity have been chosen such that the stable incommensurate periodic orbit intersects with the cross section, in �=0. The
colors indicate to which periodic orbit the initial conditions converge: red incommensurate �0���0° ,30°��, blue incommensurate �0

���30° ,60°��, purple with blue commensurate �0=60°, purple incommensurate �0���60° ,90°��, black incommensurate �0���90° ,120°��, red
with black commensurate �0=120°, green with red commensurate �0=0°, green incommensurate �0���−30° ,0°��, cyan incommensurate
�0���−60° ,−30°��, yellow with cyan commensurate �0=−60°, yellow incommensurate �0���−90° ,60°��, gray incommensurate �0�

��−120° ,−90°��. The incommensurate periodic orbit at �0�30° is indicated in blue, as it visits both��0° ,30°�� and��30° ,60°�� in one period.
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it can be seen that the robustness of the incommensurate
states in this system depends strongly on the scan line. For
the system in the figures, the incommensurate periodic orbit
is the least robust for scan lines 3 and 4. From Fig. 7, it can
be seen that the minimum of U near �=30° is shallow and
the amplitude W, especially in the case of scan line 4, is
small. The latter is a consequence of the symmetries of the
hexagonal lattice.

As discussed in Sec. III, the different stability and insta-
bility of the incommensurate states at different scan lines can
lead to the disappearance of superlubricity after an initial
superlubric period in experiments which explore more than
one scan line. Additionally, the weak stability of the incom-
mensurate states, and associated low robustness against ther-
mal fluctuations, near scan lines 3 and 4 makes superlubric
states less likely to persist in such experiments.

C. Flake size

As the number of atoms in the flake increases the moment
of inertia increases with N2. This means that the orientation
and angular velocity of larger flakes are less sensitive to
thermal fluctuations and other disruptions. By comparing
Fig. 11 to Fig. 10, we see that the incommensurate periodic
orbit of the flake with 216 atoms is more robust against
thermal fluctuations, and survives even at room temperature.

It is interesting to note that Bonelli et al. �13�, who con-
sider flexible graphite flakes, found that larger flakes interact
more weakly with the substrate than one would expect from
rigid flakes. At the edges, the flake bends toward the sub-
strate, and thus the atoms at the edge of the flake dominate
the interaction. However, in Ref. �13�, no analysis of the
stability of superlubricity was possible, as the coupling be-
tween the cantilever and flake was chosen in such a way as to
impose a preferred orientation.

D. Support velocity

At high support velocity, the motion of the flake is less
sensitive to the detailed structure of the substrate. The dy-
namics in the y and z direction are relatively fast compared
to the dynamics of the rotation, and therefore their effects on
the orientation of the flake average out. At lower support
velocities, motion in the y and z direction becomes more
relevant and can reduce the size of the basin of attraction of
the incommensurate periodic orbits, or even destroy the sta-
bility completely. In Fig. 12, trajectories are plotted for the
same flake at different support velocities. As the velocity
decreases, the flake becomes more sensitive to fluctuations
and therefore � �top left� and y �bottom left� fluctuate more.
At sufficiently low velocities, the incommensurate periodic
orbit is no longer stable, and the flake rotates to the commen-
surate orientation with stick-slip motion �top right� and high
friction �bottom right�. A stronger coupling between the flake
and cantilever would reduce the fluctuations in the y direc-
tion, and allow the stability of the incommensurate state to
persist to lower support velocities.

E. Load

The load force exerted by the cantilever on the flake
pushes it into the substrate. This affects not only the corru-

(a) (b)

(c) (d)

FIG. 10. The final orientation of a 24-atom flake �mapped onto
the interval �0° ,30°��, which was initially in the stable incommen-
surate periodic orbit is plotted as a function of temperature after a
long, but finite time, with Fload=20 nN, vs=32 m /s for scan lines
�a� 1, �b� 2, �c� 3, and �d� 4. For every temperature, 250 realizations
are plotted. Enough time has elapsed for the system to decay to the
static state distribution.

(a) (b)

FIG. 11. The plot of Fig. 10 for scan line 2 repeated for flakes of
�a� 96 and �b� 216 atoms. The stable periodic orbits of large flakes
are more robust against temperature, because the moment of inertia
grows as N2.
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FIG. 12. �Color online� The �a� orientation �, positions �b� x
and �c� y, and �d� friction Fs as a function of support position xs for
various support velocities and N=24, Fload=20 nN, scan line 2. As
the velocity decreases, the fluctuations in � and y increase and the
system behaves less one-dimensionally. For sufficiently low vs, the
system can no longer be described by the simplified model.
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gation, but also the shape of the potential to which the flake
is subjected. Consequently, for different load forces, the be-
havior of U and W is different, and so the stability of incom-
mensurate periodic orbits may change. In Fig. 13, bifurcation
diagrams similar to the one in Fig. 4 are shown for different
load forces. When the load is very high, the interaction be-
tween the flake and substrate is changed qualitatively, and for
the region near scan lines 3 and 4 the incommensurate peri-
odic orbit disappears. The simulations of Ref. �13� were per-
formed using load forces of about 100 nN, and indeed, no
superlubric behavior was observed. Bonelli et al. also per-
formed a few simulations at lower loads for 24-atom flakes,
but imposed mismatch angles near 0° and 15° on the flake,
thus eradicating the incommensurate periodic orbits near
30°.

At high load force periodic trajectories with periods
longer than one lattice period and chaotic trajectories exist.
Two such trajectories are shown in Fig. 3. These trajectories
still have roughly constant orientation, because the invariant
manifold is still stable. It is the motion on the invariant mani-
fold itself that has a longer period or is chaotic.

F. Choice of potential

Very often, for friction, the potential corrugation is repre-
sented as a two-dimensional profile in the xy plane. In this
representation, the load can only be included by scaling the
potential. Figures 7 and 8 would therefore look the same but
only scaled, regardless of load, which implies that the stable
incommensurate orbits would remain stable for any load.
This is not the case for the three-dimensional potential used
here, as can be seen from Fig. 13.

However, in a fully three-dimensional problem, the effect
of load is not simply a rescaling of the amplitude. We com-
pare our results obtained with a three-dimensional potential
to the one obtained with the two-dimensional potential of
reference �2�. We find �Fig. 14� that the cross section has
qualitatively the same features, but a significantly different
size of the basin of attraction.

G. Symmetry of the flakes

In experimental conditions, it cannot be guaranteed that
the flakes are exactly hexagonal. In Fig. 15, the bifurcation

diagrams of Figs. 4 and 5 have been repeated for threefold
symmetric flakes of two different sizes. The results are simi-
lar to those of the hexagonal flakes, though somewhat dis-
torted.

VI. CONCLUSIONS

In this paper, we have examined the possibility of realiz-
ing conditions for superlubric sliding without rotation and
locking of graphite flakes on graphite. By means of a sim-
plified analytical model, validated by our numerical simula-
tions, we have shown that incommensurate periodic orbits
with low friction can be stable. Furthermore, we have inves-
tigated the robustness of the superlubric sliding against
changes in several conditions and quantities: temperature,
scan line, flake size, support velocity, load, and asymmetry.

Our results show that some scan lines, where the center of
mass moves along a row of atoms of the substrate, are det-
rimental to the stability of superlubric sliding and lead to

(a) (b)

(c) (d)

FIG. 13. The plot of Fig. 4 repeated for load force equal to �a� 0,
�b� 10, �c� 30, and �d� 40 nN.

FIG. 14. �Color online� The cross section for scan line 3 in Fig.
9 repeated with the commonly used two-dimensional �2D� interac-
tion potential. The basin of attraction is different in shape and size.

(a)

N=33 N=69

(b) (c)

FIG. 15. The plot of Fig. 4 repeated for �a� various threefold
symmetric flakes of �b� 33 and �c� 69 atoms.
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rotation of the flake as found in Ref. �2�. Conversely, super-
lubric sliding is favored by larger flakes, higher velocities
than in AFM, and low temperature. Our calculations suggest
that in an experiment where different scan lines are explored
successively the locking would occur gradually via interme-
diate periodic orbits. For a flake of about 100 atoms, this
should occur in four steps. As the friction force for each
periodic orbit is different, this could perhaps be used as a
method for characterizing the flake.
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