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An expression for the viscosity of a dense fluid is presented that includes the effect of molecular
shape. The molecules of the fluid are approximated by chains of equal-sized, tangentially jointed,
rigid spheres. It is assumed that the collision dynamics in such a fluid can be approximated by
instantaneous collisions between two rigid spheres belonging to different chains. The approach is
thus analogous to that of Enskog for a fluid consisting of rigid spheres. The description is developed
in terms of two molecular parameters, the diameter � of the spherical segment and the chain length
�number of segments� m. It is demonstrated that an analysis of viscosity data of a particular pure
fluid alone cannot be used to obtain independently effective values of both � and m. Nevertheless,
the chain lengths of n-alkanes are determined by assuming that the diameter of each rigid sphere
making up the chain can be represented by the diameter of a methane molecule. The effective chain
lengths of n-alkanes are found to increase linearly with the number C of carbon atoms present. The
dependence can be approximated by a simple relationship m=1+ �C−1� /3. The same relationship
was reported within the context of a statistical associating fluid theory equation of state treatment of
the fluid, indicating that both the equilibrium thermodynamic properties and viscosity yield the same
value for the chain lengths of n-alkanes. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2927869�

I. INTRODUCTION

Molecular motion, and the resulting exchange of mo-
mentum and energy between colliding molecules, determine
the thermophysical properties of a system. For dilute sys-
tems, where only the binary interactions are significant, both
transport and thermodynamic properties can be related to the
intermolecular forces by means of kinetic theory and statis-
tical mechanics, respectively. For transport properties, it has
only recently become possible to perform these calculations
essentially exactly for simple molecular fluids.1–3 It has been
shown that accurate transport properties are obtained and that
viscosity, in particular, can be used to differentiate between a
number of proposed ab initio intermolecular potentials.

For dense fluids, the situation is less satisfactory. At
present, no rigorous theory exists for an exact evaluation of
the thermophysical properties of a dense fluid in terms of
realistic intermolecular potential-energy functions. A number
of models have been proposed, the earliest and most famous
being a rigid-sphere model. Despite its conceptual simplicity,
the rigid-sphere model has been used as the basis of a num-
ber of predictive methods both for transport and thermody-
namic properties.4,5 In order to achieve good accuracy, most
of the methods treat the size of the rigid sphere as an adjust-
able parameter, that is, in some cases, allowed to be weakly

temperature dependent as one would also expect from a clas-
sical perturbation theory of fluids.6 In essence, the effective
size implicitly allows for deficiencies of the rigid-sphere
model. Not surprisingly, the analysis of transport properties
yields different effective rigid-sphere diameters to those
obtained from an analysis of thermodynamic properties.

In recent years, considerable effort has been made to
extend the rigid-sphere model to include the molecular shape
and to allow for the treatment of both weak dispersive and
strong associative �directional� attractive forces. These de-
velopments, culminating in statistical associating fluid theory
�SAFT�,7–10 have been limited to thermodynamic properties;
only limited empirical developments have been attempted for
the transport properties, see for example, Refs. 11 and 12.
There are a number of reasons for this which center upon the
fact that, as the density increases, the effects of molecular
velocity correlations and the effects of finite molecular vol-
ume become important. Although the formal Boltzmann in-
tegrodifferential equation can be formulated, its general so-
lution is not yet possible. Presently, the only tractable
solution is based on Enskog’s rigid-sphere analysis.13

Although Enskog’s equations have been successfully adapted
to predict the viscosity of both pure fluids4 and mixtures,4,14

success in predicting liquid mixture viscosity, for instance,
has been limited to mixtures of similar-sized components.14

For highly asymmetric mixtures, such as methane-decane, it
has proved impossible to predict accurately the viscosity
when assuming that both molecules can be represented as
rigid spheres. Furthermore, the analysis of the viscosity of
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long chain molecules yields unphysical values for the effec-
tive size. This is not surprising considering that a fluid con-
sisting of long chain molecules will shear differently to a
fluid made of spheres. Hence, the inclusion of molecular
shape becomes the first step in obtaining more physically
plausible viscosity models.

In this work, we extend Enskog’s analysis by introduc-
ing molecular shape in expressions for the viscosity. In order
to do this, we model the molecules as tangentially bonded
chains of equal-sized rigid spheres. This choice of molecular
model is driven by a number of factors. First, molecular dy-
namics simulation indicates that chain molecules elongate
and align under shear.15 Second, chain models have proved
to be very successful in correlating the thermodynamic prop-
erties of many fluids and fluid mixtures, as demonstrated by
the success of the SAFT approach.9,10,16,17 Finally, a hard-
chain model retains the essential simplicity of instantaneous
point contact necessary to permit the Enskog-type solution.
We further compare the effective chain parameters obtained
by analyzing the viscosity data to those employed in SAFT
models.

It is important to note that the original approach of
Wertheim,8,18–21 which lies at the core of the SAFT equations
of state, was formulated for chains of tangent spherical seg-
ments �so that the number of segments m is strictly an integer
variable�. One can, however, employ the ideas of scaled par-
ticle theory �SPT� to represent molecules formed from fused
spherical segments in terms of models with noninteger val-
ues of the chain length m by using a direct analogy with the
SPT nonsphericity shape factor.22–27 A similar link between
an effective chain length and related shape factors has also
been made in more recent work.28,29 We make use of an
effective chain length for models of chain molecules in the
current paper.

II. KINETIC THEORY

A. Rigid spheres

The shear viscosity � of a pure fluid consisting of rigid
spheres of diameter � is given by Enskog’s expression,13

� = ��0�� 1

�
+ �� +

1

�
�2�2�� , �1�

where � is the molar density, ��0� is the viscosity in the limit
of zero density and constant � is equal to 0.8299. The func-
tion �, which depends on density, is the value of the radial
distribution function at contact, while parameter � is related
to the excluded volume per molecule, Vexcl, through

� =
8NA

15
��3 =

2

5
NAVexcl, �2�

where NA is Avogadro’s constant.
There are a number of ways of expressing the radial

distribution function at contact, �, in terms of the fluid den-
sity and the rigid-sphere diameter �. For example, either
Lebowitz’s solution of the Percus–Yevick equation5,30 or the
Carnahan–Starling expression31 may be used. Therefore, a
knowledge of the rigid-sphere diameter, together with the
viscosity in the limit of zero density, should be sufficient to

evaluate the viscosity of a pure fluid at any density. If the
rigid-sphere diameter is estimated in a standard way, from
equilibrium thermodynamics, then the calculated viscosity
will generally be much lower than that observed
experimentally.4 The failure of the Enskog rigid-sphere
theory, in this instance, can be attributed, primarily, to the
neglect of correlated motion. It is important to stress that the
usefulness of Enskog’s theory lies not in its ability to make
predictions of the viscosity of dense fluids a priori, as the
rigid-sphere assumption precludes that; rather it is important
because it suggests a form of the viscosity-density relation
that can be adapted to represent the behavior of real fluids
and their mixtures. Hence, in the application of Eq. �1� to
real fluids, one needs to use an effective diameter. In prac-
tice, this diameter tends to be weakly temperature dependent
to account for the oversimplification of the intermolecular
forces implicit in the Enskog model. There are number of
ways of estimating the effective diameter; here, we focus on
the solution successfully used as part of the Vesovic-
Wakeham �VW� method14,32,33 for the prediction of the vis-
cosity of fluid mixtures. The radial distribution function that
will reproduce the observed fluid viscosity can be obtained
by inverting Eq. �1� to give

���,T� =
�

2�2�2��0��� − ����0�

� ��� − ����0��2 −
4

�
�����0��2�1/2� . �3�

In general, the solution of Eq. �3� yields two roots, ��+� and
��−�, corresponding to the positive and negative signs,
respectively, of the bracketed quantity. To ensure a realistic
physical behavior, it is necessary to switch from the ��−�

branch to the ��+� branch of the solution at some particular
molar density, �*, at which the two roots become equal. This
“switchover density” is obtained from the solution of the14,33

	 ��

��
	

T
=

�

�
. �4�

If the switchover density is chosen in this way, then the
parameter � can be determined uniquely, for a given
isotherm,14,33

�*

��*��0� = 1 +
2


�
, �5�

where �* is the value of the viscosity at the switchover den-
sity. Hence, one can obtain, by means of Eq. �2� the effective
diameter � purely from the knowledge of the density depen-
dence of viscosity, along a particular isotherm.

B. Chains of rigid spheres

One of the underlying assumptions of Enskog’s rigid-
sphere analysis is that interactions involving more than two
particles almost never occur, and can therefore be neglected.
In representing molecules as chains of equally sized rigid
spheres, we maintain that interactions between more than
two chains are also negligible, and that three-particle inter-
actions involving two spheres from the same chain are also
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rare. It is possible to envisage particular configurations of
two chains in which this is not the case. For instance, a
leading sphere of one of the chains can impact the other
chain near the point where two spheres join and collide with
both at nearly the same moment. In the present analysis, we
assume that these types of collisions can be neglected.
Hence, we assume that the collisions between two chains can
be represented as collisions between two spheres belonging
to different chains.

If we make these assumptions, we can extend Enskog’s
analysis to chains. Equation �1� still holds but the radial dis-
tribution function refers to spherical segments making up the
chains, and the parameter � now refers to the excluded vol-
ume of a segment in the presence of another segment, given
that both are bound up in chains. Not only the space occu-
pied by a segment but also that occupied by the chain at-
tached to it is unavailable to the other segment or chain. As
the two chains may not overlap, the excluded volume of two
segments bound in chains is the same as the excluded
volume of two chains. Equation �1� becomes

� = ��0�� 1

�
+ �̃� +

1

�
�̃2�2�� . �6�

In this notation, tilde above the symbol indicates a quantity
with respect to chains and is used only to distinguish physi-
cal quantities where a confusion might arise. In the limit of
zero density, the radial distribution function of two chain
segments at contact tends to ��0�, not necessarily unity; while
the viscosity tends to viscosity of molecules �chains� in the
zero-density limit �̃�0�. Taking the zero-density limit of
Eq. �6�, one obtains that

�̃�0� =
��0�

��0� , �7�

where ��0� is the zero-density limit of the viscosity of a fluid
consisting of free spheres. If we assume that a chain is made
up of m equal-sized rigid spheres, then we can define an
average chain contact function �̃ in terms of the compression
factor Z as34

Z = 1 + 2��̃��3/3 = 1 + 4y�̃ , �8�

where y is the molecular packing fraction. Within the
Wertheim first-order thermodynamic perturbation theory
�TPT1�,20,21 the compressibility factor of chains of hard
spheres can be expressed in terms of the molecular packing
fraction y as8

Z = 1 + m
4y − 2y2

�1 − y�3 − �m − 1�
5
2 y − y2

�1 − 1
2 y��1 − y�

. �9�

If one defines the contact value of the distribution function
per spherical segment on the chain as

� =
�̃

m
, �10�

then the average contact value of the distribution function
between the chain segments can be expressed as

� =
1 − 1

2 y

�1 − y�3 −
m − 1

m

5
8 − 1

4 y

�1 − 1
2 y��1 − y�

. �11�

In the zero-density limit, we have

lim
�→0

� = ��0� = 1 −
5�m − 1�

8m
. �12�

This means that for chains, m	1, the contact value at zero
density ��0�
1, which is consistent with correlation hole
effects.35

By replacing the molar density of free spheres � by the
molar density of chains �̃, with

� = �̃m , �13�

one can rewrite Eq. �6� and invert it to obtain an expression
for � which is analogous to Eq. �3� for free rigid spheres.
The solution will be constrained by

�*

�̃�0���0��̃m�̃*
�

�*

�̃�0�S�̃*
= 1 +

2


�
. �14�

Hence, in analogy to the free-rigid-sphere case, one can
obtain a parameter S from the density dependence of the
viscosity along a particular isotherm. In order to relate the
parameter S to the geometry and size of the molecules, we
need to express the excluded volume parameter �̃ in terms of
the chain length m and diameter �.

III. EXCLUDED VOLUME

The parameter �̃ is related to the excluded volume of
two chains at contact by Eq. �2� with the proviso that all the
quantities now refer to chains rather than spheres. Although
for rigid spheres, the relationship between the excluded
volume and the volume of a single sphere is simply
�Vexcl=8Vsphere�, for nonspherical bodies, the relationship
between the two volumes is not straightforward; primarily
because the excluded volume depends on the geometry of the
collision. For purposes of illustration, we first present the
expressions for the excluded volume of hard spherocylinders
and then those of stiff linear chains consisting of tangent
rigid spheres of equal size.

The expressions for the excluded volume in terms of the
diameter � and chain length m can then be used, together
with Eqs. �2� and �12�, to relate S and therefore the viscosity
to the geometry and size of the molecules,

S = NA�Vexcl�m,�,��
�3m + 5�

20
=

�*

�̃*�̃�0��1 + 2/ 
 ��
,

�15�

where the �… indicates averaging over relative orientations
and configurations at the time of collision. Substitution of
these relations into Eq. �14� yields a relationship between the
chain parameters and the viscosity at the switchover density.
Hence, it allows for the determination of either � or m from
the density dependence of viscosity, providing that the other
parameter has been estimated by some other means.
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A. Spherocylinders

One can approximate a stiff linear chain consisting of m
rigid spheres of equal diameter � by a rigid spherocylinder
of the same diameter � and total length m�. The volume
unavailable to such a spherocylinder in the presence of an-
other spherocylinder is a function of the angle � between the
axes of the two spherocylinders. It has a diamond shape with
rounded ends, as illustrated in Fig. 1.

The excluded volume can be separated into three parts,
depending on the kind of contact, namely, hemisphere-
hemisphere, hemisphere-cylinder, and cylinder-cylinder.
These result in corner, side, and central core contributions,
respectively, as depicted in Fig. 1. The total excluded volume
can be written as a sum of these parts,

Vexcl
cyl �m,�,�� = Vcyl

�0���� + 2�m − 1�Vcyl
�1����

+ �m − 1�2Vcyl
�2���,�� , �16�

where V�0� denotes the total volume of corners, V�1� the
volume of a body section of length �m−1��, and V�2�

the volume of one unit cell of the central core. The central
core is spanned by the unit vectors along each axis multi-
plied by the diameters, and a vector of length � orthogonal to
the plane of the diamond. Assuming that the orientations of
the two spherocylinders are independent of each other, the
total excluded volume for each contribution is obtained by
integrating over all possible relative orientations,

�V = �
0

�/2

d�V���sin � . �17�

The corner contribution, due to contact between two
hemispheres which is independent of �, is equal to

Vcyl
�0���� =

4�

3
�3. �18�

The side contribution, due to interactions between a hemi-
sphere and a cylinder, is also independent of the relative
orientation

Vcyl
�1���� = ��3. �19�

Finally, the central core contribution for a given angle � is
given by

Vcyl
�2���,�� = 2�3 sin � . �20�

Combining Eqs. �18�–�20� yields an excluded volume
for two spherocylinders in terms of excluded volume of two
spheres,

�Vexcl
cyl �m,�,�� = 8Vsphere�1 +

3

2
�m − 1� +

3

8
�m − 1�2� .

�21�

This is the well-known results of Onsager36 for the excluded
volume of hard spherocylinders where the length of the
cylindrical core is simply L= �m−1��.

B. Linear chains of rigid spheres

The same method that was used above to obtain the ex-
pression for the excluded volume of spherocylinders can be
used for stiff, linear chains consisting of m rigid spheres of
diameter �. The corner contribution is the same and is given
by Eq. �18�. The sides are no longer shaped like cylinders,
but rather like slices of hemispheres with radii equal to �,
and centers that are a distance � apart �see Fig. 2�.

Taking both sides into account, the total side contribu-
tion is

Vchain
�1� ��� = 4�3�

0

1/2

dx
�

2
�1 − x2� =

11�

12
�3. �22�

A unit cell of the central core contribution is shown in
Fig. 3. The volume of the central unit cell can be divided into
segments of two different types, eight segments shaped like
the volume indicated by triangle ACD, and four segments
shaped like the volume indicated by BCE �cf. Fig. 6 of Ref.
37�. Both types of segments have the same general shape
with two parameters, the angle of the segment, denoted by �,
which is equal to �CAD=� /2 or �EBC=� /2−�, respec-
tively, and the height compared to the radius, denoted by b,
which is equal DA /�=1 /2 or EB /�=sin�� /2�, respectively.
The volume of such a segment of a unit sphere can be cal-
culated from a double integral,

V���,b� = �
0

b

dx�
0

x tan �

dy2
1 − x2 − y2. �23�

The volume of a unit cell is found by summing over all the
segments,

FIG. 1. The excluded volume of two spherocylinders, seen from the
direction orthogonal to the axes of both spherocylinders.

FIG. 2. Two unit cells of the side portion of the excluded volume of two
stiff chains of spheres, seen from the direction orthogonal to the axes of both
chains.
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Vchain
�2� ��,�� = �3�8V���

2
,
1

2
� + 4V���

2
− �,sin

�

2
�� .

�24�

Finally, the averaging over the relative orientation, followed
by tedious integration, yields

�Vchain
�2� ��,�� =

1

10
�11� − 18 arctan 
2 − 2
2��3 �25�

�1.45334�3. �26�

The final result for the excluded volume for a linear chain of
m tangent segments can be expressed in a new compact form
as

�Vexcl
chain�m,�,��

= 8Vsphere�1 +
11

8
�m − 1�

+
3

40�
�11� − 18 arctan 
2 − 2
2��m − 1�2� . �27�

An essentially equivalent result is obtained in Ref. 37 by a
different more involved route making use of the exact ex-
pression for the second virial coefficient determined by
Isihara;38 Isihara presents the corresponding integrals for the
general case of fused hard diatomics �the tangent dimer m
=2 being a special case� in a complicated irrational form.
The second virial coefficient of a tangent dimer obtained
from Eq. �27� is B

2
*=B2 / �mVsphere�= �Vexcl / �2mVsphere�

=5.443 92 which is the same as the Isihara result. Comparing
Eqs. �21� and �27�, we see that the coefficients of �m−1� and
�m−1�2 in the expression for the excluded volume of a stiff
chain are both approximately 8% smaller than those for the
spherocylinder. The two excluded volume expressions there-
fore differ by 8% for large m.

Strictly, one should be considering fully flexible chains
as this is the model used in deriving the TPT1 thermodynam-

ics of chains and is a more realistic representation of real
molecules. If the chains are not stiff, but floppy, the shape of
the excluded volume becomes much more complicated.
Fynewever and Yethiraj39 have examined the excluded vol-
umes of flexible chains of this type at fixed relative orienta-
tions and have fitted their fully numerical results �obtained
with a continuum configurational bias Monte Carlo method�
to a simpler algebraic form. Although one could use this
empirical forms for the excluded volume of flexible chains,
we opt for the more rigorous results of the linear models as
in any case the thermodynamic properties of the two systems
are the same at the Wertheim TPT1 first-order level. When
the chains curl back on themselves, it is possible for the
excluded volume to intersect with itself. As long as these
intersections do not represent much volume, the total ex-
cluded volume of the floppy chains can be approximated
reasonably well by the excluded volume of stiff chains. This
is the case when the typical radius of the curvature of the
floppy chains is large compared to the diameter of the
segments.

C. Viscosity

Using the spherocylinder or stiff-chain results for the
excluded volume Vexcl, Eqs. �21� and �27�, respectively, and
Eq. �15�, one can express the parameter S in terms of the
chain length and diameter of a molecule. Hence, one can
determine either � or m from the density dependence of the
viscosity, providing that the other parameter has been
estimated by some other means. We outline such a procedure
in the following section.

IV. ALKANES

A. Methane

In order to examine the adequacy of the chain concept in
describing the viscosity of real fluids, we start by applying
the developed model to alkanes. The first member of the
alkane family, methane, interacts through an intermolecular
potential40 that is sufficiently spherical that we can represent
the molecule by a single rigid sphere. Hence, we can use
Eq. �5� to determine the parameter �, and subsequently the
diameter �, from the analysis of the viscosity behavior as a
function of density for a given isotherm. The viscosity of
pure methane was obtained from the representation of Vogel
et al.41 The correlation covers a temperature range from
100 to 600 K and a pressure range up to 100 MPa. The es-
timated uncertainty is of the order of 1%–3%, in the tem-
perature and density range of interest to this work. In Fig. 4,
we illustrate the behavior of the effective rigid-sphere diam-
eter � as a function of temperature. A small temperature
variation, of the order of 10%, is observed, the effective
diameter decreasing with increasing temperature. The de-
crease in the diameter indicates, as expected, that for real
fluids the repulsive part of the intermolecular potential is
steep but not infinitely steep as in the rigid sphere model.
The effective diameter obtained from the thermodynamic
SAFT-HS �Ref. 17� and SAFT-VR �Ref. 16� models are also
denoted on Fig. 4. For the hard-core �hard-sphere
and square-well� models employed with SAFT-HS and

FIG. 3. A unit cell of the central core portion of the excluded volume of two
stiff chains of spheres, seen from the direction orthogonal to the axes of both
chain. A sphere of radius � sits with its centers at each corner. The dotted
lines indicate where the surfaces of the spheres meet. Point E is halfway
between C and F.
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SAFT-VR, the effective diameter does not vary with tem-
perature and its value is within the range of values obtained
by analyzing the viscosity data. The general agreement be-
tween the SAFT-HS, SAFT-VR, and viscosity values of the
effective diameter � indicates that the deficiencies of
Enskog’s theory in describing the viscosity are primarily
taken up by the effective radial distribution function, Eq. �3�;
while the deficiencies of the rigid-sphere model in describing
the intermolecular forces manifest themselves in the
temperature dependence of the effective diameter, �.

B. Higher alkanes

We represent the rest of the n-alkanes as chains of m
rigid spheres of equal size. We assume, in line with the trans-
ferable parameter treatment undertaken with SAFT-HS,17

that the diameter of each spherical segment is given by the
diameter of a methane molecule at that temperature. Hence,
we maintain the distinction that all the parameters in the
analysis are obtained from knowledge of viscosity, rather
than fluid-phase equilibrium properties. From an analysis of
viscosity of alkanes, we determine the parameter S by means
of Eq. �14� for a given temperature. As the effective diameter
� is known, at each temperature, we can determine the
effective chain length m for each alkane.

V. RESULTS

For an accurate calculation of m, it is essential to make
use of viscosity data for the pure components that are accu-
rate and reliable. For this purpose, we choose the currently
recommended viscosity correlations that are based on critical
assessments of the available experimental data with well-
defined accuracy. The viscosity of ethane was taken from the
correlation of Hendl et al.42 and had an uncertainty of up to
3%. The correlation extends over the temperature range from
200 to 1000 K for pressures up to 60 MPa. The viscosities
of propane and n-butane, were described with the correla-
tions of Vogel and co-workers43,44 who reported uncertainties
ranging from 3% to 6% in the range of interest to this work.
The temperature and pressure range of propane and n-butane
correlations extended to 600 K, 100 MPa and 500 K,

70 MPa, respectively. For the higher alkanes, there are no
available correlations that are based on a critical assessment
of the experimental data. To generate the viscosity for these
fluids, we made use of the correlation of Assael et al.45 that is
formulated in terms of the corresponding states principle.
The accuracy of the correlation, based on comparison with
the available experimental data, is of the order of 5%–8%.
The viscosity in the limit of zero density, ��0�, for lower
alkanes was obtained directly from the available
correlations.41–44 For n-pentane and higher alkanes the zero-
density viscosity was obtained either from an analysis of the
available experimental gas viscosity data or from the general
corresponding states correlation of Lucas and co-workers46

In Fig. 5, we illustrate the behavior of m as a function of
temperature for a selected set of linear alkanes, in the tem-
perature range where the viscosity correlations are valid. The
calculations of the chain lengths were performed both for
spherocylinders, Eq. �21�, and linear chains of spherical seg-
ments, Eq. �27�. The difference in the chain lengths obtained
from the two models is small. One remarkable feature appar-
ent from Fig. 5 is that the chain lengths are nearly indepen-
dent of temperature when the uncertainty of the viscosity
data, used in their estimation, is taken into account. This
indicates that the temperature dependence of the effective
diameter is similar for all the alkanes and can be represented
by that of methane. The universality of this function further
indicates that the steepness of the effective spherical repul-
sive part of the intermolecular potential function for alkanes
is similar. This corroborates the success of a number of pre-
dictive schemes that are based on universal correlations.4,45

The corresponding variation of effective chain length,
m, with the number of carbon atoms C is shown in Fig. 6.
The relationship is linear and can be approximated by
m=1+ �C−1� /3. The approximation can be rationalized by
the fact that the carbon-carbon bond length in n-alkanes is
roughly a third of the diameter of a methane molecule. What
is remarkable is that the same relationship with a fixed size
rigid spheres, used in SAFT-HS, successfully correlates the
critical properties of alkanes.17 A good description was ob-
tained for the critical volumes and critical pressure and tem-
perature, although the critical pressure of methane was over-

FIG. 4. The diameter of methane calculated from � obtained from the den-
sity dependence of the viscosity �Ref. 41�, along with SAFT-HS results from
�Ref. 17 and SAFT-VR results from �Ref. 16�.

FIG. 5. Chain lengths of selected n-alkanes, estimated from viscosity, as a
function of temperature. The open symbols represent the corresponding
values for spherocylinders.
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estimated and the critical temperature of methane and ethane
were underestimated. Furthermore, a free fit of m to the ex-
perimental vapor pressures and saturated liquid densities of
alkanes for a square-well model within SAFT-VR �Ref. 16�
leads to an equivalent relationship between m and C.

The viscosity data of the pure fluids cannot be used to
obtain independently the values of both � and m, instead, it
yields a value for the single effective size parameter S. In
principle, one is free to choose any combination of � and m
that satisfy Eq. �15�. One could stipulate that m should be
restricted to integer values only, to maintain its physical
meaning. However, the noninteger value of m can be viewed
as a measure of the aspect ratio �or shape� of a molecule,
rather than a number of rigid spheres. Nevertheless, the final
choice of m and � will have to be based on the ability of the
proposed chain model to predict the viscosity of mixtures,
especially of mixtures consisting of molecules of dissimilar
size.

In principle, there is no need to restrict the approach
described in this paper to n-alkanes. The main results hold
also for nonlinear isomers. However, expressions for the ex-
cluded volume of branched objects are much more compli-
cated than those of simpler linear objects. In SAFT-VR,
sometimes, branched molecules are treated as effectively
unbranched with reasonable success.

VI. CONCLUSION

Enskog’s expression for the viscosity of a dense fluid
made up of rigid spheres has been extended to hard-chain
fluids. We assume that the collision dynamics of chains of
rigid spheres can be approximated by the instant collision of
two rigid spheres belonging to different chains. For realistic
high-density fluids, the resulting description suffers from the
same deficiencies as Enskog’s theory. In particular, it cannot
be used a priori to predict the viscosity from the knowledge

of the size and shape of the molecules; the neglect of corre-
lated motion precludes such an approach.

Nevertheless, it has been shown that the derived viscos-
ity expression can be used, in a manner proposed by the VW
methodology,14,33 to obtain a single, temperature-dependent
effective size parameter from an analysis of the viscosity as a
function of density for a given isotherm. The size parameter
is further related to two molecular parameters that describe
the size and shape of the molecules, namely, the diameter of
the rigid spheres, �, making up the chain and the chain
length, m, through analytical expressions for the excluded
volume of two linear chains and for the purpose of compari-
son the equivalent expression for spherocylinders. The pro-
posed model therefore relates the viscosity of a pure fluid to
two molecular parameters � and m.

The derived expressions are used to obtain the effective
diameter of the methane molecule under the assumption that
it can be represented by a single rigid sphere. The effective
diameter was shown to be weakly temperature dependent
indicating a finite steepness �softness� of the real repulsive
part of the intermolecular potential.

The expressions are then applied to the analysis of the
best available viscosity data for n-alkanes. For this purpose,
the n-alkanes were modeled as chains of length m consisting
of rigid spheres of diameter equal to that of methane, at a
given temperature. From this analysis, we find that the effec-
tive chain lengths are nearly independent of temperature.
This indicates that the temperature dependence of the effec-
tive diameter for all alkanes can be represented by that of
methane.

The analysis further suggests that the effective chain
lengths of n-alkanes increase linearly with the number of
carbon atoms present. The dependence can be approximated
by a simple relationship m=1+ �C−1� /3. The same relation-
ship was obtained from the SAFT analysis of thermodynamic
properties.16,17 It is interesting that both the thermodynamic
and transport properties yield equivalent values for the
lengths of the n-alkanes.

One would not expect that the use of the excluded vol-
ume of a linear chain in the description of the viscosity of
real flexible chain molecules to cause a particular problem. It
has been shown that the though flexibility is important in
determining the stability or otherwise of anisotropic phases
such as the nematic, the thermodynamic properties of the
isotropic phase of flexible or of linear hard-sphere chains
turn out to be very similar �compare the findings of Refs. 39
with 47.

The primary application of these new findings will be in
relation to the VW methodology for the prediction of viscos-
ity of mixtures of nonspherical molecules. In particular, we
expect the hard-chain approach to permit a reliable predic-
tions to be made for highly asymmetric mixtures where the
current hard-sphere VW approach fails entirely. We have
shown that the analysis of the viscosity data of the pure
fluids cannot be used to independently obtain the values of �
and m. Nevertheless, the near equivalence of chain length, m,
obtained from the viscosity and SAFT indicates that, in
principle, the SAFT values can be adopted and the effective
parameter � determined uniquely from the analysis of

FIG. 6. Chain lengths of n-alkanes estimated from viscosity as a function of
the number of carbon atoms, at 300 K. For propane and butane, a tempera-
ture of 500 K was used. The analysis of the viscosity along the 300 K
isotherm, for propane and butane, indicates that the switchover density
occurs deep in the two-phase region, which introduces an additional
uncertainty in the determination of m. A single-parameter fit with the func-
tion a�C−1�+1 gives a=0.354�0.004 for stiff chains of spheres,
and a=0.340�0.003 for spherocylinders.
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viscosity. The final choice of m and � will have to be based
on the ability of the proposed chain model to predict the
viscosity of mixtures, especially of mixtures consisting of
molecules of dissimilar size. This is a topic of ongoing re-
search.

In principle, another reference compound can be used to
determine �, as long as the monomers are similar, and the
chain length is known. This method only works if there is a
suitable reference compound with a well-known chain
length. When considering compounds with bonds that are not
single bonds between carbon or hydrogen atoms, one could
obtain information about bond lengths from different com-
pounds. For instance, when one is interested in the shape of
molecules of OH bonds, one could use the density depen-
dence of the viscosity of ethanol to obtain information about
the size of such bonds, and information about carbon double
bonds could be obtained from ethylene.
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