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Abstract – Ionization in a strong laser field is a prime example of non-perturbative, correlated
electron dynamics. Simulating such processes on a first-principles basis is a major theoretical
challenge. We demonstrate that time-dependent density functional theory (TDDFT) on the basis
of a newly developed functional for the correlation potential incorporates the relevant electron
interaction effects. The central idea of our approach is to exploit information about exact ground-
state correlation in approximate time-dependent calculations. The new functional provides an
accurate description of the paradigm problem of the double ionization of the Helium atom, showing
that TDDFT is a viable tool for strong-field calculations.

Copyright c© EPLA, 2008

Introduction. – The interaction of intense laser pulses
with finite electronic systems such as atoms and molecules
has developed into a powerful tool for investigating matter
on extremely small length and time scales. This has
opened routes to microscopically manipulate electronic
systems [1–3] and to gain insights into the nature of light-
matter interaction and electronic dynamics [4,5]. Hopes
are high that steering chemical reactions and observing
electronic dynamics in real time will become standard
techniques in the future.
One of the milestones in strong-field physics was the

investigation of the double ionization of the He atom.
It was demonstrated that in a strong field the electron-
electron interaction plays a tremendously more important
role than anticipated, as the probability for doubly ioniz-
ing the atom is orders of magnitude larger than expected
from a sequential process. Thus, non-sequential ionization
leads to the famous “knee structure” [6,7] in the inten-
sity dependence of the double-ionization probability. The
generally accepted explanation for this effect is the three-
step recollision mechanism [8]: in the first step, the atom
is ionized; in the second step, the free electron is acceler-
ated over large distances (≈ 100a0, where a0 is the Bohr
radius) by the infrared-frequency field; finally the electron
recollides with the ion and kicks out the second electron.

Although the fundamental nature of this process is
understood [9–13], quantum-mechanical first-principles
calculations that simulate this type of strong-field electron
dynamics are extremely difficult due to the fact that a non-
perturbative approach is required at the experimentally
realized field strengths. Solving the correlated time-
dependent (TD) Schrödinger equation on the relevant
length and time scales is an outstanding computational
challenge already for a two-electron system even with
today’s supercomputers [14]. This is largely due to the
fact that ab initio wave function techniques gaining their
efficiency from using localized basis sets cannot be used
to describe dynamics on a length scale of about 100 a0.
An alternative quantum-mechanical approach that

avoids the immense computational effort associated with
using the two- or multi-electron wave function is the
time-dependent density functional theory (TDDFT). In
this work we show that known difficulties with “standard”
TDDFT approaches can be overcome by a new type of
exchange correlation functional. Thus, we demonstrate
that TDDFT can be a powerful tool for theoretically
investigating strong-field processes.

Kohn-Sham theory. – TDDFT in the Kohn-Sham
framework [15] relies on reproducing the interacting
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time-dependent density n(r, t), in principle exactly, by
solving [16–19] the time-dependent Kohn-Sham equations

i�
∂

∂t
ϕj(r, t) =

[
− �

2

2m
∇2+ vKS(r, t)

]
ϕj(r, t). (1)

Here, ϕj(r, t) are single-particle orbitals yielding the

density n(r, t) =
∑N
j=1 |ϕj(r, t)|2, and

vKS(r, t) = vext(r, t)+ vH(r, t)+ vxc(r, t) (2)

is the time-dependent Kohn-Sham potential. It comprises
the given external potential vext, the classical Hartree
potential vH(r, t) = e

2
∫
n(r′, t)/|r− r′|d3r′, and the

exchange correlation (xc) potential vxc. The latter poten-
tial is the crucial part of Kohn-Sham TDDFT, because it
incorporates all parts of the electron interaction that have
not been accounted for in the Hartree potential. As the
exact expression for vxc is unknown, TDDFT in practice
has to rely on approximations to the unknown exact xc
potential, and this is the point where many problems
with TDDFT calculations in the strong-field regime have
their origin. Several works have convincingly demon-
strated [20–23] that the standard approximations [24,25]
for vxc such as the “Adiabatic Local Density Approxi-
mation” (ALDA) do not reproduce hallmark features of
interacting electron dynamics in strong fields, such as the
above-mentioned knee structure. In fact, their results are
quite similar to the results of completely uncorrelated,
exchange-only calculations. This has been a long-standing
puzzle, in striking contrast to the huge success that
TDDFT has in the linear response regime where it has
become one of the most widely used methods, e.g., for
calculating photoabsorption spectra of molecules.

The xc potential of Kohn-Sham theory. – The
success of TDDFT in the linear response regime is largely
based on the fact that even relatively simple approxi-
mations such as the ALDA lead to a quite reasonable
description of the experimentally relevant electronic
excitations. Inherent to ALDA or its extensions such
as the adiabatic time-dependent generalized gradient
approximations are two approximations [24]: i) locality
in space, i.e., vALDAxc at a given point r is determined by
the density only at r; ii) locality in time, i.e., vALDAxc at
a given time t is determined by the density only at t.
Generally speaking, both of these approximations can be
quite severe, as it is known that the exact vxc depends
non-locally on r and t, i.e., the exact xc potential at a
given time t and point r is a functional of the density at
all points in space and all times prior and up to t. Thus,
the fact that functionals like ALDA fail completely in the
description of double ionization could be attributed to
different reasons. However, recent work has clarified that
the qualitatively wrong description of strong-field ioniza-
tion is a consequence of a missing step-like structure in the
popular xc potential approximations, whereas the missing
temporal non-locality only plays a minor role under
the typical experimental conditions [26–28]. While the

source of the problems has thus been pointed out, it
has remained unclear how to non-empirically construct
practically useful exchange correlation potentials that
have the desired and required feature of a quantitatively
correct step structure. In the following we present a way
in which this can be achieved.

A new approach to correlation. – The basic
concept of our approach is to use information from
highly accurate ground-state densities to construct a
potential that can be used in non-perturbative TDDFT
calculations. Thus, in an indirect way, we exploit a rarely
used aspect of the Hohenberg-Kohn theorem [29] which
states that the ground-state density uniquely determines
the entire Hamiltonian of a system and thus not only
the system’s ground state, but all of its states. On the
practical side the crucial feature of our approximation is
that it exhibits a quantitatively correct step-like structure
in the correlation potential which is closely related to the
famous derivative discontinuity [30,31].
The construction of our approximation is based on

the ensemble interpretation of fractional particle numbers
that underlies the concept of the derivative discontinuity.
For a step-by-step introduction, consider a helium atom
in an ionizing laser field which we take as constant for
simplicity of the argument. Focus on a region of space
around the nucleus, e.g., a sphere of radius R, which
contains practically all of the ground-state density in the
sense that when we integrate the ground-state density
over the sphere, we will obtain a number very close to
2. If the ionizing field is switched on, the density will be
polarized and part of the density will leave the sphere,
being accelerated towards infinity. Now integrating the
remaining density over the sphere will lead to a number
smaller than 2. More precisely, as a function of time the
average number of electrons bound to the nucleus will
drop from 2 to 0 if the field is strong enough to ionize
both electrons. In ref. [26] it was demonstrated that a step
structure builds up in the exact TD electron interaction
potential vH+ vxc as the average electron number drops
towards 1, and that this step structure is decisive for
a correct description of the electron dynamics. It was
further demonstrated that a quantitatively similar step
structure is inherent to the exact ground-state electron
interaction potential that corresponds to a ground-state
density which integrates to the same average number of
electrons as the time-dependent density. In other words,
ref. [26] showed that the two following potentials show
step structures that are quantitatively very similar to each
other: i) the numerically exact TD xc potential obtained
from the exact TD density by inverting the TD Kohn-
Sham scheme, and ii) the ground-state xc potential for
a ground-state density that integrates over the sphere to
the same fractional number of electrons. This observation
also makes sense physically, because it has long been
known [30] that the exact ground-state xc potential as
a function of particle number changes discontinuously at
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integers. The step structure seen in the xc potential reflects
this discontinuity [27,31].
With these facts in mind the following approximation to

the time-dependent xc potential —presented here for the
specific case of the Helium ionization— comes to mind
naturally. First, calculate the exact ground-state density
of He and of He+ (the latter being known analytically)
and obtain the exact ground-state Kohn-Sham potential
by inversion of the static Kohn-Sham equation. For a two-
electron singlet state as in helium, this is trivial: the orbital
is given by ϕ=

√
n/2, and from the orbital one obtains the

potential

vKS(r) =
�
2

2m

∇2ϕ
ϕ
+const (3)

to within an irrelevant constant. By subtracting the known
vext, vH and vx =−vH/2, which can easily be calculated
for a given density, one obtains the exact ground-state
correlation potential

vc = vKS− vext− vH− vx. (4)

This can be used in the solution of the time-dependent
Kohn-Sham equation (1), e.g., following the techniques
described in [32], for the first numerical propagation step
from tini to t= tini+∆t, yielding ϕ(r, t). After the first
time step ∆t, the new vKS(r, t) (eq. (2)) at the new,
advanced time t must be calculated. The potentials vH and
vx can readily be calculated exactly from the new, propa-
gated density, but the new correlation potential cannot be
obtained exactly. However, based on the arguments of the
preceeding paragraph, it can be approximated as follows.
First, one calculates the effective average number of bound
electrons N(t) at t. This will be a number less than 2,
i.e., N(t) = 1+ ε(t) with 0< ε< 1 for a reasonable physi-
cal excitation and a small time step. Then, construct the
exact ground-state ensemble density that corresponds to
this particle number according to ref. [30], i.e., calculate

n1+ε(r) = (1− ε)n1(r)+ εn2(r), (5)

where n1(r) denotes the ground-state density of He
+

(which contains one electron) and n2(r) denotes the
ground-state density of He. From this ensemble
density one can calculate the Kohn-Sham orbital
ϕens =

√
n1+ε/(1+ ε) which, when inserted into eqs. (3)

and (4), yields the exact atomic ground-state correlation
potential vNc corresponding to the average particle number
N(t) at the present time step. The total Kohn-Sham
potential which is then employed for the second time
step, leading from tini+∆t to tini+2∆t, is

vKS = vext+ vH+ vx+ v
N
c , (6)

i.e., the exact time-dependent Hartree and exchange
potential are combined with the exact atomic ensemble
ground-state correlation potential. In other words, instead
of the exact time-dependent correlation potential we use
the exact atomic ground-state correlation potential that

corresponds to the same average electron number near the
nucleus. When N(t) falls below 1, then the interpolation
of eq. (5) has to be taken between the 0- and 1-electron
densities (both of which are trivial to deal with exactly).
Let us discuss this approximation on general grounds

before we test it for specific examples. Considering the
practical side first, it is clear that compared to a simple
functional such as ALDA our approach is consider-
ably more involved because it requires very accurate
ground-state densities as input and needs the inversion of
the static ground-state Kohn-Sham equations. Without
doubt, this creates a certain computational burden.
However, this burden is quite manageable as ground-state
densities can be calculated accurately with quantum-
chemistry techniques and various methods to efficiently
invert the ground-state Kohn-Sham equations for systems
of any electron number have been developed [33–35].
Furthermore, the accurate densities need to be calculated
only once before the time-dependent calculation and
not at every time step. Therefore, the computational
load at each time step, which determines the load of the
full propagation, is not affected by the computational
burden that is associated with obtaining the accurate
ground-state densities. It should also be noted that the
approximation is not restricted to 2-electron systems, as
the principle of linear interpolation on which eq. (5) is
based is inherent to all many-electron systems [30]. The
major advantage of our approximation is that vH and vx
are treated exactly while the correlation approximation
is defined in a non-empirical way without adjustable
parameters yielding a potential with the desired step
structure.
As an aside we note that in future work it may be

possible to use the same concept to a posteriori improve
a given functional, e.g. ALDA, by using a Kohn-Sham
potential similar to eq. (6), namely

vKS = vext+ vH+ vx+ v
N
c + v

ALDA
c − vN ALDAc . (7)

Here, vN ALDAc denotes the correlation potential of ALDA
for the ground-state density corresponding to N bound
electrons, as explained in the paragraph surrounding
eq. (5).
On the theoretical side it is worthwhile to compare

the here-proposed approximation to the “adiabatically
exact one”. The adiabatically exact Kohn-Sham potential
is the uniquely defined single-particle potential which
exactly reproduces a given time-dependent density as the
solution of a ground-state problem. A procedure which
explicitly constructs this adiabatically exact potential has
been discussed in ref. [28]. The approximation which we
propose here is not the adiabatically exact one but can be
termed “N -adiabatic”, because the quantity that is taken
to be exactly the same in the time-dependent and the
ground-state problem is not the whole density, but only
the average number of particles near the nucleus, N. Thus,
in addition to the approximation of adiabaticity, i.e., the
neglect of memory effects in vc, our present approximation
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takes two further steps: It neglects the effect that a
polarization of the density through the external field has
on the correlation potential, and it neglects the effects
that the density far away from the nucleus has on the
correlation potential. Phrasing this the other way round
we can say that the physical approximation inherent to
our functional is that correlation plays a role mainly for
the description of how electrons are ionized and interact
close to the nucleus.

A paradigm test: strong-field double ionization.
– As explained in the first two sections of this manuscript,
a critical test for whether these approximations are justi-
fied is to employ the new functional to calculate the strong-
field ionization of helium. All of the usually employed
density functionals fail badly in this test [20,22,23]. This
is also a particularly hard problem to solve with TDDFT,
because density functional theory usually works better
with a large number of electrons than with a small number,
and in this sense the helium problem is the hardest test
case one can find.
For evaluating a new approach we need well-defined

and precise results to compare with. In our case, the
ultimate benchmark would be the solution of the TD
Schrödinger equation, which, as explained above, is not
easily available for the true, three-dimensional helium
atom. However, for our purposes a suitable alternative is
available in the form of the widely used one-dimensional
model of the helium atom. This model has been shown to
incorporate the relevant physical effects [10,20,21,36,37]
and is computationally tractable enough to allow for a
full solution of the TD Schrödinger equation. The model
is described by the Hamiltonian

H =
∑
j=1,2

(
p2j

2m
+ vext(zj , t)

)
+W (z1− z2), (8)

where z1, z2 are the spatial electron coordinates, p1, p2,
their momenta, and W (z) = e2/

√
z2+1 is the soft-core

Coulomb interaction. The external potential vext(z, t) =
−2W (z)+ ezE(t) comprises the nuclear attraction and
the external field of the laser E(t). We take the wave
function to be a spin singlet in accordance with the
situation in real helium. We do not fit the value of
the softening parameter to any specific numbers but use
the canonical value of 1 in W, as our aim is a general
comparison. The ground-state and time-dependent wave
function of this model can be obtained accurately with
the methods described in [32]. This gives the reference
results. The time-dependent Kohn-Sham equation eq. (1),
is solved under the same conditions (spin singlet, same
external field, same numerical algorithms) with eq. (6) for
the Kohn-Sham potential.
With this setup we first investigate a simple situation

in order to obtain an as transparent picture as possible.
The He atom is initially in its ground state and then
subjected to an ionizing electrical field that is ramped over
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Fig. 1: (Colour on-line) Total ionization as a function of time
(in a.u.) of the helium model, eq. (8), in a strong field. The
field was linearly ramped up from 0 to 0.1677 a.u. between t= 0
and t= 24 a.u. Shown are i) the exact results from a numerical
solution of the TD Schrödinger equation (red crosses), ii) the
N -adiabatic approximation of eq. (6) (blue stars), and iii) an
exchange-only calculation (cyan squares). The exchange-only
calculation completely misses the leveling-off of the ionization
around N = 1 which is seen in the exact calculation and the
N -adiabatic one.

a time of 24 atomic units (a.u.) up from 0 to a maximum
value of 0.1677 a.u., corresponding to the peak amplitude
of a pulse with an intensity of 9.9× 1014W/cm2. Our
calculations are performed on numerical grids and use
absorbing boundary conditions. The grids consist of 4096
points for each spatial coordinate at a grid separation
of 0.4 a.u. and the time step size is 0.0333 a.u. For other
details, see [32].
The observable that we investigate is the average

number of escaped electrons N(t)−N(t= 0), where

N(t) =

∫ R
−R
n(z, t) dz (9)

corresponds to the number of electrons close to the nucleus
(we choose R= 5 a0) [21]. We refer to the number of
escaped electrons as the total ionization (which is different
from the total ionization probability). Figure 1 shows
that the N -adiabatic approximation reproduces the exact
curve quite accurately. It also shows that taking into
account correlation effects is important: the exchange-only
calculation is qualitatively in error, as it underestimates
ionization initially (i.e., for t� 190 a.u.) and considerably
overestimates it at later times, leading to a total ionization
that is seriously in error.
Backed by this encouraging result one can proceed to

the real problem of investigating the double ionization in
a realistic, short, pulsed laser field. We choose a pulse at
780 nm wavelength (which is used in many experiments).
Our pulse shape is trapezoidal with 2-cycle turn-on and
turn-off times and 6 cycles total pulse duration. With these
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Fig. 2: (Colour on-line) Double-ionization probability as a
function of laser intensity for the helium model atom using
different approximations. Comparing the curves labeled “exact
density with mf”, “N -adiabatic with mf”, and “exchange only”
directly shows the influence of the approximation made for vxc
as all three curves are based on different densities but the
same mean-field expression for P2 (see main text for further
explanation). Labeling of curves is as in fig. 1. The curve
labeled “exact density no mf” shows the exact P2, i.e., the
one that is obtained from the exact density without making
the mean-field approximation for P2. This curve shows the
influence of correlation in the functional for P2.

parameters we calculate the double-ionization probability
P2 as a function of laser intensity, i.e., we perform a series
of calculations with intensities ranging from 4.52× 1014 to
2.80× 1015W/cm2.
When comparing the results of the three different calcu-

lations we have to take into account that contrary to the
total ionization the double-ionization probability is not
known as an exact functional of the density. Thus, in
order to avoid secondary errors and a possibly misguided
comparison, we compare all results on the same basis by
using the mean-field definition of the double-ionization
probability [22]. I.e., the density obtained from the numer-
ical solution of the TD-Schrödinger equation (our “exact”
benchmark), the one obtained from the TD Kohn-Sham
scheme with the N -adiabatic potential, and the one
from a TD exchange-only calculation are all inserted in
the same density-dependent mean-field expression P2,mf =
(1−N(tfinal)/2)2. In this way we ensure that our results
for P2 reflect the accuracy of our correlation potential
without masking of inaccuracies or additional errors from
other approximations.
However, it must be noted that a comparison based on

the mean-field expression for P2 neglects the fact that
also P2 is a functional of the density in which effects
beyond the mean-field approximation play a prominent
role [21,22,38–40]. This can be seen in fig. 2 by comparing
the red crosses (exact density used together with the
mean-field expression for P2) to the black circles (exact

density used together with the exact expression for P2).
Therefore, a density-functional–based calculation aiming
at comparison to experiment must use an expression for
P2 that goes beyond the mean-field approximation, e.g.,
the one from ref. [40]. However, the focus of our work here
is to obtain an improved approximation for vxc, and in
order to see the effects which vxc has on the dynamics,
a comparison based on the one-electron density, as it is
provided by the mean-field expression for P2, is sufficient.
Figure 2 shows the results of our calculations. The
N -adiabatic approximation somewhat underestimates
P2 (compared to the exact density with mean field)
consistently for all intensities and this is no surprise
in view of the above discussion and fig. 1. However,
apart from this the approximation reproduces the exact
curve very well and correctly shows the overall trend
as well as characteristic features, e.g., the turnover at
7.6× 1014W/cm2. The great improvement brought about
by the correlation potential is seen by comparing with
the exchange-only results. The latter show hardly any
structure at all, yielding an overall smooth curve that
does not show the knee structure. Thus, our calculation
shows that the N -adiabatic approximation yields a very
useful description of the relevant correlation effects,
greatly improving over previous TDDFT approximations.

Conclusion and outlook. – In this manuscript we
have demonstrated that TDDFT in the time-dependent
Kohn-Sham framework can yield a reliable description
of electron dynamics in strong fields. The key to this
success is taking into account the step-like structure
which is the signature of the derivative discontinuity
in the xc potential. To this end, we have presented an
approximation for the time-dependent correlation poten-
tial that makes use of information obtained from accurate
ground-state densities. TD Kohn-Sham calculations using
this approximation reproduce the knee structure in the
intensity dependence of the helium double ionization.
Thus, TDDFT appears as a promising route for studying
strong-field phenomena.
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