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Chapter 1
General introduction

1.1 Non-equilibrium statistical mechanics

Statistical mechanics is the branch of theoretical physics in which the macroscopic
behaviour of systems consisting of many particles is derived from microscopic
properties. At the end of the nineteenth century, Maxwell, Boltzmann, Gibbs,
and others already laid the foundations of the statistical mechanics of systems in
equilibrium. A fundamental concept introduced is the Boltzmann factor, which
assigns a probability to any equilibrium state. Nowadays, many methods exist to
carry out practical calculations for a great variety of equilibrium many-particle
systems. The statistical mechanics of non-equilibrium systems, on the other hand,
is far less developed.

The second law of thermodynamics states that entropy, a measure for the
disorder of the system, increases. In a system out of equilibrium, entropy is
produced irreversibly as the system relaxes toward equilibrium. Quantities such
as the particle number, energy, or momentum are transported through diffusion
or other irreversible means. The classical dynamics of a system of many particles,
on the other hand, is deterministic and reversible. One may conclude that time-
reversible dynamics, under most initial conditions, lead to irreversible macroscopic
behaviour.

A substantial development to the understanding of this apparent paradox was
made at the end of the nineteenth century, when Ludwig Boltzmann derived the
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2 Chapter 1

equation now known as the Boltzmann equation, which can be seen as describing
the behaviour of a system with typical initial conditions after course graining.
Despite the reversible underlying dynamics, the Boltzmann equation predicts ir-
reversible macroscopic behaviour. In the derivation of his equation, Boltzmann
made use of a statistical assumption about the underlying dynamical system, the
Stoßzahlansatz, which requires a certain amount of randomness.

A deeper mathematical understanding of the dynamical properties such as
chaoticity, ergodicity, and mixing, which are connected to macroscopic irreversibil-
ity is provided by dynamical-systems theory. The precise nature of the connections
between dynamical systems and irreversible behaviour of non-equilibrium systems
is a source of much heated discussion. Systems exist which are chaotic, but not
mixing or ergodic. But systems can also be constructed which are mixing, but
not chaotic. An example of such a system is the wind-tree model [1]. None of
these systems, however, are particularly physical. Gallavotti and Cohen [2, 3] put
forward a chaotic hypothesis, conjecturing that many-particle systems as studied
by statistical mechanics behave, in general, strongly chaotic. An introduction to
chaos and non-equilibrium statistical mechanics can be found in Dorfman’s book
on the subject [4].

Often, for understanding the effects of non-equilibrium conditions, relatively
simple systems are studied with few degrees of freedom. Many-particle systems
in equilibrium, however, have chaotic properties that are different from those of
systems with fewer degrees of freedom. For understanding the chaotic proper-
ties of many-particle systems under non-equilibrium conditions, first those of the
equilibrium systems must be comprehended fully. In this thesis, therefore, sev-
eral classical dynamical systems with many degrees of freedom are considered in
equilibrium.

1.2 Dynamical systems, chaos, and Lyapunov

exponents

A central role in the study of chaotic properties is played by the Lyapunov expo-
nents, which describe the exponential separation or convergence of nearby trajec-
tories in phase space. They quantify the rates at which infinitesimal perturbations
in initial conditions grow or decrease, and are a measure of the sensitivity of the
system to changes in the initial conditions. For a more elaborate introduction
into dynamical systems and chaos, see reference [5].

1.2.1 Lyapunov exponents

Consider a dynamical system with an N -dimensional phase space Γ. The time
evolution of the system may be discrete, or continuous. At time t = 0 the system
is assumed to be at an initial point γ0 in this phase space, evolving with time
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according to γ(γ0, t). If the system is perturbed by an infinitesimal shift δγ0 in
initial conditions, it evolves along an infinitesimally different path γ + δγ, where
δγ is in the tangent space δΓ. The evolution in tangent space is described by

γ(γ0 + δγ0, 0) = γ0 + δγ0 , (1.1)

γ(γ0 + δγ0, t) = γ(γ0, t) + δγ(γ0, δγ0, t) , (1.2)

δγ(γ0, t) = Mγ0
(t) · δγ0 , (1.3)

where Mγ0
(t) is an N -dimensional matrix, defined by

Mγ0
(t) =

dγ(γ0, t)

dγ0
. (1.4)

The Lyapunov exponents are the average rates of growth or shrinkage of such
infinitesimal changes that are eigenvectors of Mγ0

,

λi = lim
t→∞

logµi(t)

t
, (1.5)

where µi(t) is the i-th eigenvalue of Mγ0
(t). There are as many Lyapunov expo-

nents as there are dimensions of the phase space. In systems which are ergodic,
almost every trajectory comes infinitesimally close to any point in phase space.
This means that the Lyapunov exponents are (almost) independent of the initial
conditions. Often the Lyapunov exponents are defined by using not Mγ0

(t), but
rather [Mγ0

(t) · Mγ0
(t)†]1/2. In the latter definition the exponents are real and

equal to the real components of the exponents in the former definition. The imag-
inary components of the Lyapunov exponents, as they are defined here, are also
referred to as winding numbers. The subset of phase space onto which the system
ultimately converges for almost all initial conditions is called the attractor. If
(the real component of) the largest Lyapunov exponent is positive, the system is
considered chaotic.

For Hamiltonian systems, such as hard spheres with only hard-core interaction,
the dynamics are completely invariant under time reversal. For such systems, the
attractors are invariant under time reversal. The spectrum of Lyapunov exponents
therefore remains the same as well. Each tangent-space eigenvector which grows
exponentially in forward time decreases exponentially under time reversal. Under
time reversal it is mapped onto an eigenvector with opposite exponent. For every
Lyapunov exponent there is a corresponding Lyapunov exponent with opposite
sign. This is known as the conjugate pairing rule. In systems which are reversible,
but for which the attractor is not invariant under time reversal, the conditions
for and the form of the conjugate pairing rule are somewhat different [6].
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Figure 1.1: A saw-tooth map of the unit interval, as expressed in equation (1.6), dis-
played for η > 1. At every iteration some of the points escape from the system, in this
parameter range.

An example: a saw-tooth map

Consider as an example of a dynamical system, the following map of the unit
interval,

xi+1 = f(xi) =

{

2ηxi if 0 ≤ xi <
1
2 ,

2η(xi − 1) + 1 if 1
2 ≤ xi < 1 ,

(1.6)

with positive η. This saw-tooth map is displayed in figure 1.1 for η > 1. From an
initial x0, a sequence of xi = f i(x0) follows, which defines the time evolution of
the system.

As a function of η, three regimes may be distinguished. If η is between 0 and
1
2 , the unit interval is mapped onto a subset of the unit interval, which is mapped
onto an even smaller subset in the next iteration, and so on. The attractor consists
of the points 0 and 1. If η is between 1

2 and 1, the unit interval is mapped exactly
onto the unit interval. In this case, the attractor is a subset of the unit interval.
If η is larger than 1, part of the unit interval is mapped outside the unit interval,
and almost all points escape from the system.

The system has a one-dimensional phase space, and therefore the matrix M
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reduces to a scalar. It can be calculated from the map,

δxi+1 = f(xi + δxi) − f(xi) . (1.7)

If δxi is infinitesimal, the discontinuity at xi = 1
2 is, with probability 1, not

between xi and xi +δxi, and the tangent-space transformation for any xi is found
to be

δxi+1 = 2ηδxi , (1.8)

for any xi. The system has one Lyapunov exponent which can be calculated from
equation (1.8),

λ = lim
i→∞

1

i
log

δxi

δx0
= lim

i→∞

1

i
log[(2η)i] = log(2η) . (1.9)

For η > 1
2 , the Lyapunov exponent is positive and the system is chaotic.

1.2.2 Kolmogorov-Sinai entropy

If the measurements on a system have only a finite resolution, the Lyapunov
exponents quantify how quickly the error in the measurements makes it impossible
to make accurate predictions of the future phase-space path. They also indicate
how fast extra information can be gained about the original state of the system.
If the system is chaotic, two points in phase space which could, originally, not be
distinguished separate exponentially. Eventually, the separation becomes larger
than the resolution of the measurements and new information can be extracted
about the initial conditions. The maximal rate at which information on the system
is gained is called the Kolmogorov-Sinai entropy. In closed systems, such as the
systems described in this thesis, the Kolmogorov-Sinai entropy equals the sum of
all positive Lyapunov exponents.

In systems with escape, such as the saw-tooth map for η > 2, the points
which have escaped from the system can no longer provide information about
their initial conditions, and so the Kolmogorov-Sinai entropy in such systems is
smaller. The escape rate formalism of Gaspard and Nicolis [7] formalises this. In
this formalism, the rate of escape of particles from an open system is expressed in
terms of the sum of the positive Lyapunov exponents and the Kolmogorov-Sinai
entropy on the repeller. Macroscopically, the escape rate can often be expressed
in terms of a diffusion constant or some other transport property. More on the
connection between the Kolmogorov-Sinai entropy and transport coefficients can
be found in references [8–10].
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Figure 1.2: Part of a random Lorentz gas in two dimensions without external fields.
Two diverging trajectories of the point particle are drawn.

1.3 Many-particle systems and other systems

with many degrees of freedom

1.3.1 Lorentz gases

Many studies have been done on the chaotic properties of the Lorentz gas in dif-
ferent forms (see, for example, references [11–20]). It is a simple model which
consists of a single point particle moving freely between elastic, spherical scatter-
ers. The scatterers can either be placed at random or in a lattice configuration,
overlapping or not. The Lorentz gas provides a physical system, yet is still simple
enough to allow for exact calculations of many properties. This simplicity is par-
tially due to the fact that the Lorentz gas contains only one moving particle, and
therefore does not have many dynamical degrees of freedom. Due to the shape
of the scatterers, the Lorentz gas is chaotic. In figure 1.2, a part of a random
Lorentz gas is shown with two exponentially diverging trajectories.

The simplicity of the Lorentz gas makes it possible to examine its properties
under a variety of conditions. For example, the scatterers can be replaced by
a repulsive potential [21]. The Lorentz gas can also be investigated under non-
equilibrium conditions. For example, calculations can be done on systems with
external fields [11, 15–17]. In such systems, energy is added to the system by the
field, and therefore must be removed by other means. This is done with ther-
mostats. Thermostats are fiercely debated, as many commonly used thermostats
are of somewhat unphysical nature.
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The Lorentz gas may be defined in an arbitrary number of dimensions d, but
has mostly been studied in two or three dimensions. It is possible to study the
Lorentz gas with large d. This is of interest, as the phase space of a hard-sphere
system can also be described as a high-dimensional space with fixed scatterers. In
chapter 5 of this thesis, the Lyapunov spectrum of the high-dimensional Lorentz
gas is studied in equilibrium.

1.3.2 Many degrees of freedom

Systems which consist of many particles have many Lyapunov exponents. They
behave differently from systems which have only a few degrees of freedom, such as
the two- or three-dimensional Lorentz gas. The Lyapunov spectra of such systems
show some interesting features, which are specific to systems consisting of many
particles, or at least systems with many degrees of freedom. Understanding the
chaotic properties of systems of many particles starts with understanding the
chaotic properties of equilibrium systems.

In this thesis, three systems with many degrees of freedom are considered in
equilibrium. Firstly, the system consisting of freely moving hard spheres or disks
is discussed in chapters 3 and 4. The second system, in chapter 5, is the high-
dimensional Lorentz gas. In chapter 6, a system is described which is similar to
the Lorentz gas, but contains cylindrical scatterers instead of spherical ones. This
system is far more similar to many-particle systems than the high-dimensional
Lorentz gas.

1.3.3 Hard disks and spheres

The simplest many-particle systems to do calculations on are systems of hard
particles. Molecular dynamics simulations for the entire Lyapunov spectrum of
such systems have been done by Posch, Dellago, and Hirschl [22, 23]. Calcula-
tions have been done for the largest exponents of systems of many freely moving,
elastically colliding hard disks [6, 24–26].

The smallest positive and corresponding negative exponents found in these
simulations have received a lot of attention because of their surprising behaviour.
For large enough systems, their values are inversely proportional to the system
length. The tangent-space eigenvectors associated with these exponents show a
wave-like behaviour. These kind of properties have not been observed in systems
with few degrees of freedom.

Eckmann and Gat [27] as well as Taniguchi, Dettmann, and Morriss [28, 29],
have made attempts to approach these exponents by using random-matrix theory.
Another approach, based on kinetic theory has been taken by McNamara and
Mareschal [30]. Our own calculations of these exponents, also based on kinetic
theory, are described in chapter 3.
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In chapter 4, the Kolmogorov-Sinai entropy is estimated for hard disks/spheres
at low densities. The next to leading order is found to be larger than in earlier
calculations [31], and is in better agreement with simulation results.



Chapter 2
Hard spheres in phase space

and tangent space

2.1 Introduction

This chapter and chapters 3, 4, and 6, are devoted to the study of classical systems
consisting of large numbers of disks or spheres, moving freely between elastic
collisions described by hard-core interaction. The two other systems considered in
this thesis, the high-dimensional Lorentz gas and the system with a point particle
moving among high-dimensional cylindrical scatterers, are similar in their phase-
space and tangent-space dynamics. This chapter serves to provide an introduction
to the dynamics of systems of hard spheres, as well as to their statistical properties.

Due to the convex curvature of hard disks or spheres, the systems are strongly
chaotic. At low densities systems with hard-core interaction or with soft po-
tentials behave nearly the same. However, the hard-core interaction makes the
calculations of the dynamics much simpler, because the collision rules are simple
and, in addition, there is no typical energy scale. Also, only two particles can
interact at a time.

In chapter 1, the concept of chaos was introduced, and it was discussed how
chaos can be characterised using Lyapunov exponents, the exponential rates of
divergence of infinitesimally perturbed trajectories in phase space. For this de-
scription the space of such infinitesimal perturbations, the tangent space, was

9



10 Chapter 2

introduced. In order to calculate the Lyapunov exponents for a system, it is nec-
essary to understand the dynamics in phase space, from which the dynamics in
tangent space can be derived.

2.2 Dynamics in phase space

Consider a gas of N identical, hard spheres of diameter a and mass m, freely
moving in d dimensions. The number of dimensions is, usually, equal to 2 or 3.
The phase space of this system is characterised by the positions ri and velocities
vi of the particles,

γ = (γi) , (2.1)

γi = (ri,vi) . (2.2)

The space of vectors γi is called µ space. The tangent space of this space may
be described by the infinitesimal perturbations δri and δvi of the positions and
velocities. Together they span the tangent space to phase space,

δγ = (δγi) , (2.3)

δγi = (δri, δvi) . (2.4)

The dynamics in phase space of this system consist of an alternating sequence
of free flights and collisions. During free flights the particles do not interact. At
a collision the positions of the particles remain the same, but the velocities are
changed instantaneously. During a free flight, the velocity of a particle is constant
and the position of a particle grows linearly with its velocity,

vi(t) = vi(t0) , (2.5)

ri(t) = ri(t0) + (t− t0)vi(t0) . (2.6)

At a collision between particles i and j, the positions of the particles remain
the same, but the momenta are exchanged. The dynamics of a collision are shown
in figure 2.1 in relative coordinates. Note that in these coordinates the dynamics
are the same as those of a point particle colliding with a cylinder.

Define the collision normal σ̂ as the unit vector that indicates the relative
positions of the two particles at the instant of collision,

σ̂ =
1

a
(ri − rj) . (2.7)

During the collision, momentum is exchanged between the colliding particles along
the collision normal. None of the other particles interact. Using primes to denote
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Figure 2.1: Two particles at a collision in relative phase space. The collision normal σ̂
is the unit vector pointing from the centre of one particle to the centre of the other.

the coordinates in phase space after the collision, one finds

r′i = ri , (2.8)

r′j = rj , (2.9)

v′
i = vi − σ̂(σ̂ · vij) , (2.10)

v′
j = vj + σ̂(σ̂ · vij) , (2.11)

where vij = vi − vj is the relative velocity. The positions and velocities of the
other particles remain unchanged.

2.3 Tangent space

From equations (1.4) and the dynamics in phase space, equations (2.5)–(2.11),
the dynamics in tangent space can be derived [6]. During free flights there is no
interaction between particles in phase space, and therefore also not in tangent
space. The dynamics in tangent space are similar to the dynamics in phase space.
The perturbation in position grows linearly with the perturbation in the velocity,
while the perturbation in velocity remains unchanged. This can be written in
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matrix form as

(

δri(t)
δvi(t)

)

= Z(t− t0) ·
(

δri(t0)
δvi(t0)

)

, (2.12)

Z(t− t0) =

(

1 (t− t0)1

0 1

)

, (2.13)

in which 1 is the d× d identity matrix.
At a collision between particles i and j, there is only interaction between the

two colliding particles. Only the tangent-space vectors of the colliding particles are
changed [25]. By applying equation (1.3) to the dynamics described in equations
(2.8)–(2.11) the collision dynamics in tangent space can be found. In figure 2.1
an example of the phase-space and tangent-space dynamics is shown.

It is important to realise that an infinitesimal difference in the positions of the
colliding particles produces an infinitesimal difference in the collision time,

δt = − σ̂ · (δri − δrj)

σ̂ · vij
. (2.14)

This, in turn, leads to an infinitesimal change in the collision normal, proportional
to the component of the relative velocity which is perpendicular to the collision
normal,

δσ̂ =
1

a
[(δri − δrj) + vijδt] =

(σ̂ · vij)1 − vij σ̂

aσ̂ · vij
· (δri − δrj) . (2.15)

Here the notation ab denotes the standard tensor product of vectors a and b.
The perturbed momenta v + δv are exchanged along the perturbed collision

normal σ̂ + δσ̂ according to equations (2.10) and (2.11), instead of along σ̂. This
produces an infinitesimal perturbation in the post-collisional positions and veloc-
ities of the particles involved in the collision, leading to infinitesimal changes in
both positions and velocities right after the collision.

For convenience, we switch to relative and centre-of-mass coordinates, and
infinitesimal perturbations of them, δrij = δri − δrj , δRij = (δri + δrj)/2, δvij =
δvi − δvj , and δVij = (δvi + δvj)/2. These can be found from equations (2.10)
and (2.11) to transform as

δr′ij = δrij − 2S · δrij , (2.16)

δR′
ij = δRij , (2.17)

δv′
ij = δvij − 2S · δvij − 2Q · δrij , (2.18)

δV′
ij = δVij , (2.19)
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in which S and Q are the d× d matrices,

S = σ̂σ̂ , (2.20)

Q =
[(σ̂ · vij)1 + σ̂vij ] · [(σ̂ · vij)1− vij σ̂]

a(σ̂ · vij)
. (2.21)

In the tangent space of particles i and j, this may be written as









δr′i
δr′j
δv′

i

δv′
j









=



















1− S S 0 0

S 1 − S 0 0

−Q Q 1− S S

Q −Q S 1− S



















·









δri

δrj

δvi

δvj









. (2.22)

The presence of the matrix Q in the tangent-space collision dynamics is essential
for the chaotic properties of the system. Without it, the system would not be
chaotic. Some properties of Q lead to unexpected results. Surprisingly, due to
certain properties of Q, ring collisions contribute to the smallest positive Lyapunov
exponents to leading order in density, as is described in chapter 3. The properties
of Q also feature in chapter 4, where previously ignored contributions to the
Kolmogorov-Sinai entropy are found to be the result of the properties of Q.

Mγ0
(t) in equation (1.3) is the product of a sequence of matrices. Let Z(t)

be the 2dN × 2dN matrix which performs the transformations of Z(t) on all
particles. Let Lp be the 2dN×2dN matrix which performs the transformations of
equation (2.22) on the two particles involved in collision p and leaves the rest of
the particles untouched. Mγ0

(t) is the product of these matrices for the sequence
of the collisions (1, 2, . . . , p) between time t and t0. Its specific form reads

Mγ0
(t) = Z(t− tp) · Lp · Z(tp − tp−1)Lp−1 · · · · · L1 · Z(t1 − t0) . (2.23)

2.4 Boltzmann and Enskog equations

A rigorous calculation of the path of every particle is not feasible in a many-
particle system with unspecified initial conditions. One has to resort to statistical
approximations, for low densities and large particle numbers. These can be formu-
lated in a systematic way. As an introduction, we review how the Stoßzahlansatz
is used to derive the Boltzmann and Enskog equations. For higher densities these
can be generalised heuristically in the way proposed by Enskog. We will see that
this approximation works less well in the calculation presented in chapter 3 than
in the standard Enskog equation used for calculating transport coefficients for
moderately dense systems.
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The Boltzmann and Enskog equations describe the dynamics of hard-sphere
and hard-disk systems at, respectively, low and moderate densities. They are
equations for the single-particle distribution function, f(r,v, t). For a single sys-
tem, the distribution is peaked at the positions and velocities of the particles, and
zero elsewhere,

fmic(r,v, t) =

N
∑

i=1

δ(r − ri)δ(v − vi) , (2.24)

where δ(q) represents the product of the Dirac delta functions of the d components
of q. Calculating the time evolution of fmic is equivalent to solving the equations
of motion and equally impossible.

In order to obtain a practical equation one has to consider smooth distribu-
tion functions. This can be viewed in two ways. The distribution function can
be interpreted as a density distribution after a course graining in µ space. The
distribution function can also be interpreted as an ensemble average of the mi-
croscopic distribution function. It is an average distribution function over many
typical initial conditions. For detailed derivations of the Boltzmann equation and
the fundamental difficulties associated with it, see references [4, 32, 33].

Further, to derive the Boltzmann and Enskog equations, the approximation
of the Stoßzahlansatz is necessary.

2.4.1 The BBGKY hierarchy equation

In the derivation of either the Boltzmann or the Enskog equation, one may start
from the first Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy equation. This is
an exact equation for the rate of change of the one-particle distribution function
in terms of the pair-distribution function, f (2). For hard-core interactions the
standard form cannot be used, because force is ill-defined. Instead it may be
expressed in the form

∂f(r,v, t)

∂t
+ v · ∇rf(r,v, t) + ∇v · a(r,v, t)f(r,v, t)

=

∫

σ̂·(v−u)≤0

du dσ̂ nad−1 | σ̂ · (v − u)|

×
[

f (2)(r,v′, r + aσ̂,u′, t) − f (2)(r,v, r − aσ̂,u, t)
]

, (2.25)

in which f (2) denotes the two-particle distribution function, and u and v respec-
tively u′ and v′ are the velocities before the collision with collision normal σ̂ in
the restituting and direct collisions. The second and third terms on the left-hand
side of equation (2.25) describe the effects of free flight in position space and the
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action of external forces, respectively. The vector a(r,v, t) is the acceleration
of a particle due to external forces as a function of position, velocity, and time.
The right-hand side expresses the rate of change due to collisions. The integral
is over the collision normal and the outgoing velocity of the other particle. The
factor | σ̂ · (v − u)| represents the component of the relative velocity normal to
the “collision plane.”

2.4.2 The Stoßzahlansatz

In the low-density approximation, Boltzmann’s Stoßzahlansatz approximates the
pre-collisional pair distribution functions in equation (2.25) by a product of one-
particle distributions. In addition, in the Boltzmann equation, both of these are
evaluated at the same position r, which is a good approximation if the diameter
a is small compared to the mean free path.

The Enskog equation is a heuristic generalisation of the Boltzmann equation,
known to give a good approximate description of the dynamics up to moderate
densities (about a quarter of close packing). In this equation, it is assumed that
the velocities of the colliding particles are still uncorrelated, but there is a spatial
correlation equal to that of a system in non-uniform equilibrium with some den-
sity field, the same as the actual system. The pair distribution is approximated
by the product of two one-particle distribution functions, evaluated at the actual
positions of the two particles, and a factor χE, which is equal to the equilibrium
pair-correlation function at contact between the two particles evaluated as a func-
tion of the density n((r1 + r2)/2) at the point halfway between r1 and r2. Notice
that this approximation is exact for a system in homogeneous equilibrium. The
explicit form of the Enskog equation in a system without external fields thus reads

∂f(r,v, t)

∂t
+ v · ∇rf(r,v, t)

=

∫

σ̂·(v−u)≤0

du dσ̂ χE(n)nad−1 | σ̂ · (v − u)|

× [f(r,v′, t)f(r + aσ̂,u′, t) − f(r,v, t)f(r − aσ̂,u, t)] . (2.26)

This equation effectively reduces to the Boltzmann equation in the limit n → 0,
when the difference in position between the two colliding particles, rij = aσ̂, may
be ignored, and χE approaches unity.

The approximation made in the Stoßzahlansatz excludes the possibility that
two colliding particles have information about each other from earlier collisions.
Predominant corrections from events where such correlations are present are due
to so-called ring collisions. For more details on ring collisions, see reference [34].
In a finite system, eventually, every collision will be a correlated collision. The
rings, however, are extremely long, and it seems fair to assume that eventually
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any remaining correlation becomes negligible. In general, contributions from ring
collisions are expected to appear in macroscopic quantities such as transport co-
efficients in higher orders in the density only. Some more details on ring collisions
can be found in chapter 3, where it is discussed how ring collisions can, in fact,
affect the low-density limit of some of the Lyapunov exponents.

More details on the Boltzmann equation and Enskog’s theory of dense gases
may be found in references [32] and [33].

2.4.3 Solutions in equilibrium

In this thesis, only equilibrium systems are studied. In equilibrium the time
derivative in equation (2.26) vanishes and, in the absence of external fields, the
particles are distributed homogeneously. The equilibrium solution to the Enskog
and Boltzmann equations is the Maxwell distribution,

f(r,v, t) = nφM(vi) = n

(

2π

mβ

)−d/2

exp

(

−1

2
βm|v|2

)

, (2.27)

where β = 1/(kBT ), and T is the temperature, which is related to the average
kinetic energy per particle E through E = d/(2β) = d kBT/2.

The collision rate for specific collision parameters is proportional to the dif-
ferential cross section and the component of the relative velocity normal to the
collision plane. It is equal to

1
2Np(v,u, σ̂)dvdudσ̂ = 1

2N |σ̂ · (v − u)|χE(n)nad−1φM(v)φM(u)

× dvdudσ̂ . (2.28)

Note that any integrals are only over the range of σ̂ where σ̂ · (vi−vj) is negative.
Often in this thesis the functions to be integrated depend only on the angle θ
between vi −vj and σ̂. In this case, the integrals over σ̂ may be transformed into
integrals over θ,

∫

dσ̂ =

∫

sind−2 θ dθ . (2.29)

The velocity-dependent collision frequency can be found by integrating the col-
lision rate over the outgoing velocity of the other particle and over the collision
normal,

ν(v) =

∫

du dσ̂ χE(n)nad−1|σ̂ · (v − u)|φM(u) . (2.30)

Because the equilibrium distribution is homogeneous and isotropic, the velocity-
dependent collision frequency only depends on the absolute value of the velocity,
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not on its orientation. After integration over the velocity one finds the average
collision frequency for a given particle

ν̄ =

∫

dv ν(v)φM(v) =
2π(d−1)/2

Γ
(

d
2

)

χE(n)nad−1

√
βm

. (2.31)

The total collision frequency of the system is equal to 1
2Nν̄.

In chapter 4, the distribution of free-flight times is needed. In the low-density
limit, the free-flight times of the particles are distributed exponentially and as a
function of the particle velocity according to

pτ (τ |v)dτ = ν(v) exp[−ν(v)τ ]dτ . (2.32)





Chapter 3
Goldstone modes in

Lyapunov spectra of hard

disks

Sections 3.3, 3.4, 3.5, and 3.6 of this chapter are based on Physical Review E 70,
016207 (2004) [35].

3.1 Introduction

Recently, the largest Lyapunov exponent has been calculated for systems of many
freely moving hard spheres [6, 25]. Simulations of this system to calculate the
entire spectrum have been carried out by Posch, Hirschl, and Dellago [22, 23, 36].
The behaviour of the smallest positive and corresponding negative exponents in
these simulations has received a great deal of attention because of their unex-
pected properties. For large enough systems, these exponents, at fixed density,
temperature, and system shape, are inversely proportional to the system size.
The tangent-space eigenvectors associated with these exponents have a wave-like
dependence on position.

Eckmann and Gat [27] as well as Taniguchi, Dettmann, and Morriss [28, 29]
have made attempts to calculate these exponents by using random-matrix the-
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ory. Another approach, based on kinetic theory has been taken by McNamara
and Mareschal [30]. In the present chapter, part of the behaviour of the small
exponents is explained both qualitatively and quantitatively, also on the basis
of kinetic theory. The way in which closure of the equations is obtained differs
completely from the approach taken by McNamara and Mareschal.

The composition of this chapter is as follows. Section 3.2 is a short introduction
to the results of the simulations by Posch and Hirschl for hard spheres in two
dimensions [22]. In section 3.3, the small exponents are shown to be due to the
Goldstone mechanism. Starting from the dynamics of hard spheres, described in
section 2.2, a set of equations for the Lyapunov modes corresponding to these small
exponents are derived in section 3.4. This accomplished by using a generalised
Enskog equation. The general form of the solutions is discussed in section 3.5 and
the quantitative results derived from them are the subject of section 3.6. Finally,
some remarks on the consequences of ring collisions are made in section 3.7.

3.2 Simulations

In principle, Mγ0
(t) defined in equation (1.4) can be calculated numerically for

finite times for any finite system and the eigenvalues can be determined. Posch
and Hirschl [22] have done molecular dynamics simulations to determine the en-
tire Lyapunov spectrum of systems consisting of many hard disks in rectangular
boxes with periodic boundary conditions. A spectrum as calculated by Posch and
Hirschl is displayed in figure 3.1.

The eigenvectors in tangent space belonging to the large exponents are typi-
cally quite localised; only a few particles closely together contribute significantly
to a given eigenvector. When the system is large enough compared to the mean
free-path length, a step structure appears in the Lyapunov exponents near zero.
The heights of the steps are inversely proportional to the size of the box. The
tangent-space eigenvector is distributed over all particles, much in the same way
as with the zero modes. This is discussed in section 3.3. An example is shown in
figure 3.2.

The tangent-space vectors belonging to the six exponents in each step ap-
pear, on average and to first approximation, to be linear combinations of the
zero modes with a sinusoidal spatial modulation. This is apparent in the ex-
ample in figure 3.2. The slow modes belonging to a certain wave vector can
be separated into two groups, one consisting of four longitudinal modes and the
other one of two transverse modes. The transverse modes are found to be linear
combinations of sinusoidal spatial modulations of the zero modes resulting from
a translation or a Galilei transformation in the direction perpendicular to the
wave vector. The longitudinal modes are linear combinations of modulations of
the four remaining zero modes. The transverse modes are non-propagating, but
the longitudinal modes propagate through the system at constant speed, to first
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Figure 3.1: The spectrum of Lyapunov exponents from the simulations [22, 23, 37] of 750
hard spheres in two dimensions at density n = 0.1 in a rectangular box of dimensions
10×75 a2/n, with periodic boundary conditions. Only the positive exponents are plotted,
since, by the conjugate pairing rule, the negative spectrum is exactly the opposite. The
inset shows an enlargement of the bottom right corner.

approximation the same for all longitudinal modes. The Lyapunov exponents
belonging to these modes have imaginary components. This behaviour has been
confirmed in direct-simulation Monte Carlo simulations performed by Forster and
Posch [37]. Taniguchi and Morriss [38] as well as Eckmann et al. [36] have also
investigated the behaviour of these modes under reflecting boundary conditions
and found similar results. For more details, see references [22, 23].

Besides the simulations in systems of hard disks and spheres, simulations of
the spectrum have also been done in systems of particles with soft potentials at
various densities. Posch et al. [39, 40] used a Weeks-Chandler-Anderson potential
with a finite range to investigate the spectrum for various degrees of softness.
Radons and Yang used a Lennard-Jones potential in a one-dimensional system
[41, 42]. For low densities such systems behave similarly to hard spheres. At
higher densities, the step structure in the spectrum disappears.
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Figure 3.2: The component of δri in the short direction, δx, is plotted against the
position of the particle in the long direction, y, for the mode corresponding to λ1493, one
of the transverse modes in the first step. These data are from the same simulation as
the data in figure 3.1. The corresponding exponent is indicated there with a full box.

3.3 Symmetries and Goldstone modes

From the symmetries of the dynamics of systems of many particles, some state-
ments can be made concerning the existence of Lyapunov exponents which are
zero. In this chapter, these Lyapunov exponents and their corresponding eigen-
vectors will be shown to be connected to the collective modes found in the simu-
lations.

3.3.1 Symmetries and zero Lyapunov exponents

Vectors in tangent space which are generated by symmetries of the dynamics of
the system do not grow or shrink exponentially. They are eigenvectors with zero
Lyapunov exponents and are referred to as the zero modes. For a system of
hard spheres under periodic boundary conditions, the symmetries in phase space
are uniform translations, Galilei transformations, time translations, and velocity
scaling. They correspond to symmetries in tangent space which give rise to the
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zero modes. The initial displacements of the zero modes are

δγi = (∆r0, 0) , (3.1)

δγi = (0,∆v0) , (3.2)

δγi = (vi∆t0, 0) = (∆rv, 0) , (3.3)

δγi = (0,vi∆λ0) = (0,∆vv) , (3.4)

where ∆r0, ∆v0, ∆t0, and ∆λ0 are constant vectors and scalars which are inde-
pendent of the particles. The quantities ∆r0 and ∆v0 can have components in
all d directions of the space. In the case of Galilei transformations and velocity
scaling the tangent-space vectors grow linearly, rather than exponentially, with
time. Hence the corresponding Lyapunov exponents are zero. These symmetries
can be destroyed by boundary conditions. If, for example, the boundary condi-
tions are reflecting the modes associated with uniform translations and Galilei
transformations are destroyed.

Soft potentials

In systems with soft potentials, the zero modes resulting from uniform translations
and Galilei transformations are still described by equations (3.1) and (3.2). The
explicit form of the time-translation mode is different, because of the forces be-
tween the particles, but time translation still is an obvious continuous symmetry
of the system. The time mode becomes

δγi =

(

vi∆t0,−
1

m

dV (r)

dri
∆t0

)

. (3.5)

The velocity scaling mode is associated with velocity scaling, which is associated
with energy conservation. In the hard-particle system, the energy mode is pro-
portional to the vector normal to the constant energy surface, the gradient of
the energy in the phase space, Γ. One might expect to have the same in the
soft-potential system. The energy mode would be expected to be

δγi =

(

1

m

dV (r)

dri
∆λ0,vi∆λ0

)

. (3.6)

However, this does not work. If, for example, a system is considered with limited-
range potentials, points in phase space exist where no potentials overlap. In these
points, the mode in equation (3.6) would be equal to the energy-scaling mode in
the hard-particle system. As soon as two particles interact, differences appear.
But, for given impact parameters, in the soft-potential system, the scattering
angle at the rescaled velocity differs from that at the original velocity. In the
system with hard-core interaction, this is not the case. After the interaction
equation (3.6) is no longer obeyed. The velocity-scaling symmetry is destroyed
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by the fact that the potential has a typical energy scale, which cannot be rescaled
along with the kinetic energy. The vector in equation (3.6) may be pointing in a
direction orthogonal to the constant energy surface, under time-evolution it does
not evolve onto itself. The tangent vector in equation (3.6) is not a zero mode.

One might wonder if there is a zero mode related to constant energy at all,
since the corresponding symmetry is destroyed. The conjugate pairing rule states
that for every positive exponent there is a corresponding negative exponent with
the same absolute value. There must therefore be an even number of non-zero
Lyapunov exponents. As there is an even number of exponents, we know that
there has to be an even number of zero Lyapunov exponents. There must be
a sixth (or eighth in three dimensions) zero Lyapunov exponent as well, with a
corresponding sixth (or eighth) zero mode.

In systems at low densities, this mode should look similar to the velocity
rescaling mode. In order to preserve the scattering angles and prevent expo-
nential growth of the perturbation, a small perturbation must be added. This
perturbation just before the collisions must originate from an extra contribution
of order n to the velocity perturbation just after the previous collision. This prob-
lem may, in fact, have something to do with the disappearace of the step structure
in soft-potential systems at high density.

3.3.2 Goldstone modes

The sinusoidal patterns found in the simulations may be explained as Goldstone
modes. These occur in systems with a spontaneously broken continuous symme-
try. These modes were first introduced by Goldstone [43]. Well-known examples
of Goldstone modes are spin waves in ferromagnets, where the rotational symme-
try is broken, and phonons in crystals, where translation symmetry is broken by
the crystal lattice.

In the present case the symmetries associated with the zero modes are in-
deed continuous. The tangent space is a linear space and the tangent vector can
be chosen to be of any length. In tangent space the system does not move to-
wards a symmetric state, and therefore the symmetries in tangent space which
are associated with the zero modes are spontaneously broken.

The symmetry operator and the evolution operator commute. Translation
invariance also causes the evolution operator to commute with the translation
operator, so that they have a set of common eigenfunctions. These have the
general form

δγi = fk(vj , rij) exp (ik · ri) , (3.7)

where the eigenvalues of the operator translating each postition over the vector
a are of the form exp(ik · a). The Goldstone modes are those eigenmodes that
for k → 0 reduce to linear combinations of the zero modes. For non-zero values
of k, they contain a sinusoidal modulation in space of the continuous symmetry
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which grows or shrinks slowly with time. Spatial propagation, as seen in the
simulations for the longitudinal modes, may be accounted for by allowing λ to
have an imaginary component. In the usual definition of the Lyapunov exponents,
they do not have imaginary components. Here it is useful to allow imaginary
components for the purpose of describing the propagation of the longitudinal
modes. In the rest of this chapter, a way to calculate the exponents belonging to
the Goldstone modes will be discussed.

3.4 Boltzmann and Enskog equations

Except in a rigorous calculation of the path of every particle, starting from the
initial conditions, as done in the molecular-dynamics simulations, it is impossible
to know the matrix Mγ0

in equation (1.4) exactly. The tangent-space eigenvector
belonging to a given Lyapunov exponent will in general depend on the initial con-
ditions of all the particles in a much too complicated way to be specified exactly.
It is therefore complicated to calculate the tangent-space vector which belongs to
any Lyapunov exponent exactly. To find the exponents, one has to resort to sta-
tistical approximations, for low densities and large particle numbers. To this end,
we start with assumptions similar to the Stoßzahlansatz in the Boltzmann and
Enskog equations and derive a generalised Enskog equation from a generalised
hierarchy equation.

3.4.1 Generalised Enskog equation in tangent µ space

To describe the dynamics in tangent space, a generalised Boltzmann equation is
derived for the single-particle distribution function in both µ space and “tangent
µ space,” f(r,v, δr, δv, t). On integration over the variables in tangent space, the
equation and the solutions we are interested in must reduce to equations (2.26)
and (2.27) respectively. Note that in this chapter, as opposed to in the rest of
this thesis, δr and δv are used to denote d-dimensional tangent vectors. In the
rest of this thesis they are dN -dimensional tangent vectors.

For given initial conditions, the eigenvectors of Mγ0
in general depend sensi-

tively on the precise values of the collision parameters of all collisions, as generated
by the positions and velocities of all particles. The zero modes are exceptions to
this. For small k it is to be expected that the Goldstone modes behave in a similar
way and are approximately independent of the collision parameters of the various
collisions. Under those circumstances one may expect that the 2dN -dimensional
tangent-space vector can be described by a single-particle distribution function
that depends smoothly on velocity, position and time, just like the velocity distri-
bution in ordinary µ space. One may start from a generalised hierarchy equation
which expresses the rate of change of the single-particle distribution function in
µ space and tangent µ space in terms of the two-particle distribution, similarly
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to equation (2.25). In the absence of external fields, one has

∂f(r,v, δr, δv, t)

∂t
+ v · ∇rf(r,v, δr, δv, t) + δv · ∇δrf(r,v, δr, δv, t)

=

∫

σ̂·(v−u)≤0

du dσ̂ dδu dδr̃ nad−1 | σ̂ · (v − u)|

×
[

f (2)(r,v′, δr′, δv′, r + aσ̂,u′, δr̃′, δu′, t)

− f (2)(r,v, δr, δv, r − aσ̂,u, δr̃, δu, t)
]

, (3.8)

where δu and δv are the perturbations of u and v. The perturbations in the
positions of the two particles are denoted by δr and δr̃. The primes are used to
denote the velocities and tangent-µ-space vectors of the particles before the colli-
sion. The second and third terms on the left-hand side of the equation represent
the rate of change of the distribution function due to free flight in µ space and
tangent µ space. The right-hand side of the equation describes the rate of change
due to collisions.

If in addition one makes the assumption that the distribution function of the
tangent space vectors of two particles about to collide, factorises in a similar
way as the distribution of their velocities, one ends up with a generalised Enskog
equation in tangent µ space, which, in absence of an external field, is of the form

∂f(r,v, δr, δv, t)

∂t
+ v · ∇rf(r,v, δr, δv, t) + δv · ∇δrf(r,v, δr, δv, t)

=

∫

σ̂·(v−u)≤0

du dσ̂ dδs dδuχE(n)nad−1 | σ̂ · (v − u)|

× [f(r,v′, δr′, δv′, t)f(r + aσ̂,u′, δs′, δu′, t)

− f(r,v, δr, δv, t)f(r − aσ̂,u, δs, δu, t)] . (3.9)

If the variables in tangent µ space, δr and δv, are integrated over, this equation
reduces to equation (2.26).

Because δr and δv are infinitesimal, the dynamics in tangent space are linear
in these quantities. Therefore, from equations (2.22) and (3.9) one may obtain
closed linear equations for the time evolution of the average first moments 〈δr〉
and 〈δv〉. To this end, multiply both sides of equation (3.9) by δr or δv and then
integrate over both. The result is a set of equations for the averages,

d

dt
δr(r,v, t) = − v · ∂

∂r
δr(r,v, t) + δv(r,v, t) + CSδr(r,v, t) , (3.10)

d

dt
δv(r,v, t) = − v · ∂

∂r
δv(r,v, t) + CSδv(r,v, t) + CQδr(r,v, t) . (3.11)
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The functions δr(r,v, t) and δv(r,v, t) are the averages of δr and δv of a particle
as a function of its position and velocity, and of time. The linear collision operators
CS and CQ are associated with the matrices S and Q, and are given by

CS δq(r,v, t) =

∫

σ̂·(v−u)≤0

du dσ̂ χE(n)nad−1 | σ̂ · (v − u)|φM(u)

× { δq(r,v′, t) + S · [ δq(r + aσ̂,u′, t) − δq(r,v′, t)]

− δq(r,v, t)} , (3.12)

CQ δr(r,v, t) =

∫

σ̂·(v−u)≤0

du dσ̂ χE(n)nad−1 | σ̂ · (v − u)|φM(u)

× Q · [δr(r + aσ̂,u′, t) − δr(r,v′, t)] , (3.13)

where δq denotes either δr or δv. In equation (3.12) the first two terms between
braces are gain terms. The last term is the loss term. Note that, from equa-
tion (2.21), Q depends on the collision parameter and on the velocities of the
particles before the collision. This means that in equation (3.13) it depends on
σ̂, u′, and v′. The collision operators are proportional to the average collision
frequency ν̄, which for dilute systems is proportional to the number density n.

3.4.2 Fourier transform

As the translation operators commute with the collision operators (3.12) and
(3.13), solutions to equations (3.10) and (3.11) may be found that are common
eigenfunctions of these operators, of the form

δq(r,v, t) = ∆q(v) exp(ik · r + λt) , (3.14)

where q is either r or v, and kj = 2πnj/Lj is the j-th component of the wave
vector of the sinusoidal modulation and λ is the corresponding Lyapunov expo-
nent. Among these the Goldstone modes are those solutions that in the limit
of vanishing wave number reduce to linear combinations of the zero modes. For
these modes to stand out among the continuum of other modes their wavelength
has to be large compared to the typical length scale of the mean free path, or

kv̄ � ν̄ , (3.15)

where v̄ is the average velocity.
On substituting the Fourier transform, equation (3.14), into equations (3.10)

and (3.11), they become eigenvalue equations for the Goldstone modes,

λ∆r(v) = −i(k · v)∆r + ∆v + BS∆r , (3.16)

λ∆v(v) = −i(k · v)∆v + BS∆v + BQ∆r . (3.17)
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The operators BS and BQ are the Fourier transforms of the collision operators CS

and CQ. They satisfy the equations

BS∆q(v) =

∫

σ̂·(v−u)≤0

du dσ̂ χE(n)nad−1 |σ̂ · (v − u)|φM(u)

× {∆q(v′) + S · [∆q(u′) exp (−iak · σ̂) − ∆q(v′)]

− ∆q(v)} , (3.18)

BQ∆r(v) =

∫

σ̂·(v−u)≤0

du dσ̂ χE(n)nad−1|σ̂ · (v − u)|φM(u)

× Q · [∆r(u′) exp (−iak · σ̂) − ∆r(v′)] , (3.19)

where ∆q can be either ∆r or ∆v. One of these, for instance ∆v, can be elimi-
nated from the equations. One must solve equation (3.16) for ∆v and substitute
the result into equation (3.17). This yields an equation for ∆r,

[(λ+ ik · v − BS)
2 − BQ]∆r = 0 . (3.20)

This equation can be solved by the use of a perturbation expansion in k, pro-
vided the mean free path is much smaller than the wavelength, as expressed by
equation (3.15).

3.5 Solutions

3.5.1 Perturbation theory

If k is taken to be a small parameter, one may expand the operators and solutions
in powers of k, as

BS = B
(0)
S

+ kB
(1)
S

+ k2B
(2)
S

+ . . . , (3.21)

BQ = B
(0)
Q

+ kB
(1)
Q

+ k2B
(2)
Q

+ . . . , (3.22)

∆r = ∆r(0) + k∆r(1) + k2∆r(2) + . . . , (3.23)

The higher order terms of ∆r, ∆r(1) and ∆r(2), may be chosen orthogonal to
∆r(0). Note that for k → 0, the linear operators BS and BQ become identical
to CS and CQ. When acting on linear combinations of zero modes, ∆r(0), the
unperturbed operators satisfy the properties

B
(0)
S

∆r(0) = B
(0)
Q

∆r(0) = 〈∆r(0)|B(0)
S

= 〈∆r(0)|B(0)
Q

= 0 , (3.24)
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where 〈.|.〉 represents the inner product defined by integration against a Maxwell
distribution of the velocity, which is the equilibrium distribution. As it turns out,
B

(0)
Q

has some non-trivial right eigenfunctions with zero eigenvalues, which will
have an important effect on the limiting values of Lyapunov exponents in the limit
of vanishing density. An example of such an eigenfunction is ∆r(v) = v⊥k̂+v‖k̂⊥,
where v⊥ and v‖ are the components of v perpendicular and parallel to k, and
k̂ is the unit vector in the direction of k.

In zeroth order equation (3.20) reduces to

[(λ(0) − B
(0)
S

)2 − B
(0)
Q

]∆r(0) = 0 . (3.25)

The relevant solutions to this are the zero modes, with λ(0) = 0. This means that
the Goldstone modes to leading order in k are the zero modes with a sinusoidal
modulation, in nice agreement with the findings in references [22, 23].

In linear order, one finds with the aid of equation (3.24)

[−B
(0)
S

(ik̂ · v − B
(1)
S

) − B
(1)
Q

]∆r(0) = −[(B
(0)
S

)2 − B
(0)
Q

]∆r(1) . (3.26)

This is an equation for ∆r(1). If ∆r is taken orthogonal to the space of zero
modes, the operator (B

(0)
S

)2 − B
(0)
Q

becomes invertible. The formal solution of
equation (3.26) is

∆r(1) = [(B
(0)
S

)2 − B
(0)
Q

]−1[B
(0)
S

(ik̂ · v − B
(1)
S

) + B
(1)
Q

]∆r(0) . (3.27)

This form suggests that ∆r(1) is of zeroth order in n, just as ∆r(0), but this is
actually not the case, because the operator [(B

(0)
S

)2 − B
(0)
Q

]−1 acts on functions
with non-vanishing components along the non-trivial right zero eigenfunctions of
B

(0)
Q

. This yields contributions to ∆r(1) of order 1/n. One might wonder whether
this could cause a divergence in the limit of vanishing density, but that is not the
case because of the restriction imposed on k by equation (3.15).

The second-order equation involves the first-order Lyapunov exponent λ(1),
the second-order Lyapunov exponent λ(2), and the second-order tangent-space
vector ∆r(2),

[{−B
(0)
S
, λ(2) − B

(2)
S

}+ + (λ(1) + ik̂ · v − B
(1)
S

)2 − B
(2)
Q

]∆r(0)

+ [{−B
(0)
S
, ik̂ · v − B

(1)
S

}+ − B
(1)
Q

]∆r(1) + [(B
(0)
S

)2 − B
(0)
Q

]∆r(2) = 0 , (3.28)

where {., .}+ is used to denote the anticommutator of two operators. On taking
the inner product with ∆r(0), all terms involving ∆r(2) vanish as a consequence
of equation (3.24). The resulting set of equations reads

〈∆r(0)|[(λ(1) + ik̂ · v − B
(1)
S

)2 − B
(2)
Q

]|∆r(0)〉
+ 〈∆r(0)|[−(ik̂ · v − B

(1)
S

)B
(0)
S

− B
(1)
Q

]|∆r(1)〉 = 0 . (3.29)
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As ∆r(0) is a linear combination of three independent zero modes, equation (3.29)
actually has to be read as a 3× 3 matrix equation involving the matrix elements
between the various zero modes. In principle all of these are second-order poly-
nomials in λ(1). The eigenvalues, as usual, follow from the condition that the
determinant of the matrix vanishes as a function of λ(1).

3.5.2 General form of the solutions

In order to investigate the general structure of equation (3.29) it is useful to
organise the zero modes for ∆r(0) as

∆r
(0)
⊥ = k̂⊥; ∆r

(0)
‖ = k̂; ∆r(0)

v
=

√

βm

2
v , (3.30)

where β = 1/(kBT ). The first mode consists of a perpendicular displacement,
i.e., a spatial translation normal to the wave vector, the second mode to a parallel
displacement, and the third one to a time translation.

The first mode is odd in k̂⊥ and the last two even; the first two modes are
even in v and the last one odd. The collision operators BS and BQ as well as
the function k̂ · v are odd in k̂⊥ to every order. The operators B

(n)
S

and B
(n)
Q

are
even in v for even n and odd for odd n. On the basis of these parity properties,
it follows immediately that the structure of equation (3.29), written as a matrix
equation on the basis (3.30), is restricted to

(λ(1))2





1 0 0
0 1 0
0 0 1



+ iλ(1)





0 0 0
0 0 xv,‖

0 x‖,v 0





−





y⊥,⊥ 0 0
0 y‖,‖ 0
0 0 yv,v



 = 0 . (3.31)

The constants x and y are determined by temperature and by the form of the
collision operators. From this it becomes clear that the equation can be split into
two parts, one for the perpendicular zero mode, the transverse part, and one for
the parallel zero mode and the time mode, the longitudinal part. From the general
form of the matrices one can derive the general form of the Lyapunov exponents
λ = kλ(1) to be

λtrans = ±k√y⊥,⊥ , (3.32)

λlong = ±k
√

y1 ± i
√
y2 , (3.33)

where y1 and y2 are functions of xv,‖, x‖,v, y‖,‖, and yv,v. The unnormalised
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eigenvectors are

∆r
(0)
trans = k̂⊥ , (3.34)

∆r
(0)
long = k̂ + c

√

βm

2
v , (3.35)

where c is a constant which can be found from the constante in equation (3.31). If
y⊥,⊥ > 0, the Lyapunov exponent of the transverse mode is real and therefore the
mode is of the same form as in the simulations reported in references [22, 23, 36].
If y2 > 0, the longitudinal Lyapunov exponents have both real and imaginary
components, and these modes also have the form of the longitudinal modes found
in the simulations.

3.5.3 Density expansion

In many cases, expressions calculated using the Stoßzahlansatz become exact in
the limit of vanishing density, for example in the case of transport coefficients of
dilute gases [32]. It is interesting to investigate the behaviour of the Lyapunov
exponents in this limit and compare it to the results found in the simulations. In
the limit of vanishing density equation (3.29) reduces to

〈∆r(0)|[λ(1) + i(k̂ · v)]2|∆r(0)〉 − 〈∆r(0)|[i(k̂ · v)B
(0)
S

+ B
(1)
Q

]|∆r(1)〉 = 0 .

(3.36)

For this equation it is crucial indeed that ∆r(1) is of the order of n−1. If there were
no non-trivial right eigenfunctions of B

(0)
Q

with zero eigenvalue, ∆r(1) would be
one order of n higher, and the second term would not contribute to the Lyapunov
exponents in the limit of vanishing density.

In the following section the actual magnitudes of the two terms in equa-
tion (3.36) are discussed further.

3.6 Results and discussion

If only the first term in equation (3.29) is kept, the calculation is fairly simple.
From now on we choose d = 2. The same calculations can easily be repeated for
d = 3, but there are far fewer simulation results to compare to. Equation (3.31)
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in this approximation becomes

(λ(1))2
βm

2





1 0 0
0 1 0
0 0 1



+ iλ(1)

√

βm

2





0 0 0
0 0 1
0 1 0





−





1
2 0 0
0 1

2 0
0 0 1



 = 0 , (3.37)

which is independent of the density. The solutions for the Lyapunov exponents
then are

λtrans = ± k√
βm

, (3.38)

λlong = ±1

2

√

1 ± i
√

7

√

2

βm
k (3.39)

≈ (±0.978± i 0.676)
k√
βm

. (3.40)

The structure of the corresponding eigenvectors is indeed like that found in sim-
ulations [22, 23].

To calculate the contribution from the second term in equation (3.29) to the
leading order of the Lyapunov exponents, one has to choose a suitable basis in
which to express the function ∆r(1)(v). The basis must be orthogonal with regard
to the chosen inner product 〈.|.〉. Next, the matrix elements of the operators B

(i)
S

and B
(i)
Q

must be calculated between elements of the basis.
A simple, but suitable, basis is the set of functions that are products of Hermite

polynomials in the components of v
√

mβ/2 parallel and perpendicular to the
wave vector k. The Hermite polynomials Hi(x) form a complete orthogonal basis
with regard to integration against exp (−x2), and therefore their products will be
orthogonal under the inner product used here. The solution to equation (3.20)
can thus be expanded as

∆r(v) =
∑

l,p,q

el cl,p,qHp(v‖)Hq(v⊥) , (3.41)

where l can be either ⊥ or ‖, e⊥ is k̂⊥, and e‖ is k̂.
By truncating all expressions at some finite order in the polynomial expansion,

one finds approximate values for λ(1). For good convergence one has to go beyond
the zeroth- and first-order Hermite polynomials. In the appendix A more details
are given on the matrix representations of the truncated operators and on the
convergence of the Lyapunov exponents in dependence on the order of truncation.
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Figure 3.3: The Lyapunov exponents for transverse and longitudinal modes from the
simulations [22, 23] compared to the present calculations.
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Figure 3.4: The velocities of the longitudinal mode from simulations [22, 23] compared
to the present calculations.
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In two dimensions, to sixth order in the polynomial expansion, the results in
the limit of density going to zero are

λtrans = ±0.886
k√
βm

, (3.42)

λlong = ±0.607
k√
βm

, (3.43)

vlong = ±0.706
1√
βm

. (3.44)

With respect to equations (3.38)–(3.40) the corrections are largest for the Lyapu-
nov exponent of the longitudinal mode.

For low densities the form of the modes is predicted correctly by the cal-
culations; the modes are split into non-propagating transverse and propagating
longitudinal modes. For number density n = ρa2 = 0.02, the Lyapunov exponents
from the simulations are

λtrans = ±0.906
k√
βm

, (3.45)

λlong = ±0.783
k√
βm

, (3.46)

vlong = ±0.703
1√
βm

. (3.47)

The calculated Lyapunov exponent of the transverse mode and the propagation
speed of the longitudinal mode compare to the values from the simulations, within
2% at n = 0.02. The Lyapunov exponent for the longitudinal mode deviates by
about 25%.

The results for higher densities are displayed in figure 3.3. With increasing
density the calculated values deviate increasingly from the simulation results.
For the longitudinal mode the predicted real part of the Lyapunov exponent even
drops to zero and the exponent becomes purely imaginary.

The deviations from the simulations can be attributed to contributions from
ring terms and possibly other contributions to a generalised BQ operator that are
at most of order n2. From equation (3.27) one sees that such terms, working
on the non-trivial zero eigenfunctions of B

(0)
Q

, contribute to the leading order
terms in the density expansion of ∆r(1), just like (B

(0)
S

)2. Therefore they have
to be included in the second term in equation (3.36). So in contrast to usual
applications of kinetic theory, where ring terms only contribute to higher orders
in the density, in the present case they contribute to the leading order. In the
present calculation these contributions are not included. Similarly, the ring terms
will contribute to higher orders in a density expansion of the Lyapunov exponents.
These contributions may be responsible for the discrepancies between simulation
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results and Enskog theory for higher densities, which show up in figures 3.3 and
3.4. In section 3.7 the contributions from ring collisions are discussed in more
detail. For more details on ring terms in kinetic theory, see reference [34].

It is interesting to compare our results to those by McNamara and Mareschal
[30], who also based their work on kinetic-theory calculations. They do not derive
equations for the distribution functions, but go directly to hydrodynamic-like
equations for the moments. To close these, they make hypotheses to factorise the
fluxes. The resulting values for the Lyapunov exponents in the low-density limit
are less close to the simulation values than those from our calculations. It is not
clear if in this treatment the effects of the non-trivial zero eigenfunctions of B

(0)
Q

are accounted for.
Forster and Posch have also done simulations on similar systems with soft

potentials [39]. They roughly find a branch again of Lyapunov exponents close to
zero, but the sinusoidal structure of the corresponding modes is much less clear.
It would be interesting to calculate the Lyapunov exponents with kinetic-theory
methods also for this case. It would also be interesting to look at small Lyapunov
exponents in non-equilibrium systems. However, in such systems the calculations
become more complicated because the stationary velocity distributions are no
longer Maxwellian.

3.7 Ring collisions

Ring collisions are sequences of collisions where a number of particles collide with
each other, directly or indirectly, more than once. For example, particle one
collides with particle two, after which particle two collides with particle three and
either two or three is bounced onto particle one. It is also possible for double
rings or even more complicated sequences to occur. Some examples are displayed
in figures 3.5 and 3.6.

Sequences of collisions of this type are ignored by the Stoßzahlansatz. In order
to have a ring collision, either at least three particles must be close together, or
one particle must have an outgoing velocity after a collision such that it will collide
with a particle that is at a distance of the order of the mean free path.

In a finite system, eventually, every collision will be a ring collision. The rings,
however, are extremely long, and the assumption is that any remaining correla-
tions are negligible. Often, ring collisions contribute to macroscopic quantities
only in the higher orders in the density. For the transport coefficients, the con-
tributions from ring collisions in two dimensions are of order n logn compared to
the leading order, and in three dimensions of order n. In the case of long time
tails, however, ring collisions dominate (see, for example, references [15, 44, 45]).

As described in the previous section, such terms, working on the non-trivial
zero eigenfunctions of B

(0)
Q

, contribute to the leading order terms in the density
expansion of ∆r(1), just like (B

(0)
S

)2. Therefore they have to be included in the
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Figure 3.5: The various possibilities for the simplest configurations of ring collisions,
three particles with three collisions. Figures (a) and (c) show the real ring collisions,
and figures (b), (d), and (e) show the virtual counterparts.
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Figure 3.6: An example of a double ring collision involving four collisions and three
particles. Such collisions are a factor of n more rare than single rings.

second term in equation (3.36). So in contrast to usual applications of kinetic
theory, where ring terms only contribute to higher orders in the density, they
contribute to the leading order in the present case.

To find the contributions from ring collisions to the collision operators, the
effects of the perturbation expansions of the collision operators working on ∆r

and ∆v must be calculated for a ring collision.
The collision parameters except for the outgoing velocity of one of the particles

must be integrated out against the proper probability distributions, just as in
the case of the collision operators in equations (3.18) and (3.19). This includes
the collision times and the collision normals of all the collisions, as well as the
velocities of all but one particle. The collision parameters of the collisions are not
independent of each other, since one collision must be configured in such a way
as to close the ring. The contributions consist of sums of products of I, S, and
Q belonging to various collisions and τ between the collisions, multiplied by the
probability of the configuration, and integrated over the collision parameters.

The corrections to BS can be calculated when it works on ∆r or when it works
on ∆v. The results of these calculations differ. It is therefore necessary to write
BS in equations (3.16) and (3.17) as B̃Sr or B̃Sv, depending on which part of the
tangent space it works on. After this modification equations (3.26) and (3.29)
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read,

[−B̃
(0)
Sv

(ik̂ · v − B̃
(1)
Sr

) − B̃
(1)
Q

]∆r(0) = −[B̃
(0)
Sv

B̃
(0)
Sr

− B̃
(0)
Q

]∆r(1) , (3.48)

〈∆r(0)|[(λ(1) + ik̂ · v − B̃
(1)
Sv

)(λ(1) + ik̂ · v − B̃
(1)
Sr

) − B̃
(2)
Q

]|∆r(0)〉
+ 〈∆r(0)|[−(ik̂ · v − B̃

(1)
Sv

)B̃
(0)
Sr

− B̃
(1)
Q

]|∆r(1)〉 = 0 . (3.49)

Here ˜ has been used to indicate collision operators which include both ring
collisions and uncorrelated collisions. From symmetries of the collision matrices
and the form of this equation, some statements can be made about the sizes and
relevance of the contributions from the various collision operators.

3.7.1 Real and virtual ring collisions

Not only have ring collision been ignored by the Stoßzahlansatz, also collision
sequences have been allowed in which, at some point in the future or past, two
particles pass through each other. Because the particles have already (indirectly)
encountered each other before, such an overlap, in the Stoßzahlansatz approxi-
mation, cannot lead to a collision. This situation is called a virtual ring collision.
To calculate the ring collision contribution to a quantity, one must calculate the
contributions from real ring collisions and subtract the contributions from virtual
ring collisions. If the contributions from a real collision is equal to the contribution
of it’s virtual counterpart, this means that the total contribution cancels. In fig-
ure 3.5 a few different configurations of ring collisions are shown, along with their
virtual counterparts. An example of a double ring collision is show in figure 3.6.

3.7.2 Long collision times

The τ factors could potentially become large, since τ ∼ 1/n. This means that
a priori there is no reason why long rings would not contribute strongly, even to
lower orders in the density than the terms from normal collisions. Simply put, the
slow modes could couple strongly to faster growing modes and then back to slow
modes through ring collisions. This could, in principle, lead to contributions to
the collision operators from the faster growing modes, of order ν̄n logn. Because
of the restrictions of equation (3.15), the Lyapunov exponents calculated in the
previous sections for the Goldstone modes can be at most of order n.

In the case of the perturbed collision operators, there are extra factors due to
the difference in positions before and after the ring. If the free paths are large,
this means that the first and second order in the wave vector corrections are,
respectively, one and two orders lower in the density than the zeroth order. This
could give rise to large contributions.
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3.7.3 Zero modes

The zero modes are exact eigenvectors of the collision matrices, with eigenvalues
one. The virtual and real collisions, therefore, work in the same way on the zero
modes, but contribute to the collision operators with opposite sign. This means
that the contributions from the real ring collisions are cancelled exactly by those
from the virtual collisions for any collision operator working on the zero modes,
on the right or on the left. This includes collision operators that are of higher
order in k.

As a consequence many terms in equations (3.26) and (3.29) cannot yield
any leading-order ring-collision contributions to the smallest Lyapunov exponents.
Only ring-collision terms in B

(0)
Q

on the right-hand side of equation (3.48) may
contribute to the lowest order in density.

3.8 Conclusions

In this chapter, it has been demonstrated how Lyapunov exponents close to
zero are related to Goldstone modes. The dependence on the wave number was
found to be qualitatively consistent with numerical results. The behaviour of the
tangent-space eigenvectors was also found correctly. This was achieved through a
kinetic-theory approach, in which we used a molecular chaos assumption for the
pair-distribution function to derive an equation similar to the Enskog equation.
For low densities this reduces effectively to a generalised Boltzmann equation.

The calculated values for the exponents belonging to the transverse modes
at low densities are within a few percent of the values found in the simulations
[22, 23]. The propagation velocity for the transverse mode is within 1% of the
simulation values. The value for the Lyapunov exponent belonging to the longi-
tudinal mode deviates from the simulations by 25%. For increasing densities, the
predicted values deviate increasingly from the values found in the simulations.
These deviations are probably due to contributions from ring collisions and sim-
ilar terms. In most applications of the Boltzmann equation such terms produce
contributions to the relevant quantities which are of higher order in the density,
but in the calculation presented in this chapter they turn out to contribute to the
leading order, as a consequence of the non-trivial zero eigenfunctions of one of the
collision operators.





Chapter 4
The Kolmogorov-Sinai

entropy of dilute hard

spheres

4.1 Introduction

The Kolmogorov-Sinai entropy of a dynamical system describes the maximal rate
at which the system produces information about its phase-space trajectory. In
systems without escape, it equals the sum of all positive Lyapunov exponents. In
systems with escape, the Kolmogorov-Sinai entropy also involves the escape rate
of trajectories from the system. Because of this it may be connected to transport
coefficients [7–10].

In this chapter, again a system consisting of hard, spherical particles is consid-
ered at small number density n, in d dimensions (d = 2, 3). The Kolmogorov-Sinai
entropy is calculated in the low-density approximation with the aid of kinetic the-
ory. It is found to behave as

hKS = Nν̄A

[

log(nad) +B +O(nad) +O

(

1

N

)]

. (4.1)

The constants A and b have been calculated by van Beijeren et al. [31], but the
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results found for B were unsatisfactory when compared to simulation results. In
this chapter, a similar, but more satisfactory, calculation of B is presented, and
compared to simulation results. The difference is due to the fact that not all
components of δvi are assumed to be multiplied by a factor ∼ 1/n at a collision.
Contributions to the growth of the stretching factor that were ignored previously
are taken into account in the present calculation.

4.2 Kolmogorov-Sinai entropy

In standard terminology, the stretching factor Λ(t) is defined as the factor by
which the expanding part of tangent space stretches over a time t. This quantity
can be used to calculate the Ruelle pressure as well as the sum of the positive
Lyapunov exponents, which is equal to the Kolmogorov-Sinai entropy in systems
without escape [19, 20, 46]. For long times, the stretching is dominated by the
positive Lyapunov exponents, and one has for the Kolmogorov-Sinai entropy

hKS = lim
t→∞

1

t
log Λ(t) . (4.2)

For long times, the stretching factor can be calculated from the total growth of an
arbitrary volume element in dN dimensions. After a few Lyapunov times (defined
as the inverse of the smallest positive Lyapunov exponent), the dynamics project
the volume element onto the expanding manifold and its subsequent growth is
described completely by the stretching factor.

For hard-sphere systems, where the collision times are exactly defined, the
stretching factor can be written as the product of stretching factors resulting from
each of the different single collisions combined with the subsequent free flights of
the two particles involved. In this description, the effects of the free flights of the
other particles have already been accounted for at their most recent collisions.
On the right-hand side of equation (4.2), the logarithm may be replaced by the
sum of logarithms of these stretching factors. The resulting expression may be
interpreted as a time average, which in ergodic systems may be replaced by an
ensemble average. Hence,

hKS =
Nν̄

2
〈log Λi〉 . (4.3)

Here Λi is the single-collision stretching factor due to collision i. To obtain the
Kolmogorov-Sinai entropy, the distribution of single-collision stretching factors
must be calculated.

4.2.1 Projection

The growth of a dN -dimensional volume element in δΓ can be monitored through
its projection onto a subspace of δΓ with at least the same number of dimen-
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sions, as long as this projection space is not orthogonal to one of the dN leading
eigenvectors of M. In the limit t → ∞, the logarithm of the determinant of the
transformation of the projection yields the same Kolmogorov-Sinai entropy as the
logarithm of the stretching factor of the actual volume element.

If (δr
(m)
i , δv

(m)
i ) are the eigenvectors belonging to the positive exponents, the

eigenvectors which belong to their partners under conjugate pairing are equal
to (δr

(m)
i ,−δv(m)

i ). This means that eigenvectors which have no contributions
along either δri or δvi correspond to themselves under conjugate pairing. Such
eigenvectors must therefore have Lyapunov exponents which are zero. The spaces
spanned by either δr or δv are not orthogonal to any eigenvectors which belong to
non-zero Lyapunov exponents. The dN -dimensional vectors whose components
belonging to particle i are δri and δvi are denoted by δr and δv. In the system
described here a convenient choice for the projection space may therefore be either
of these spaces. Here, δv is used for this purpose, because it does not change
during free flights.

4.2.2 Stretching factor of a single collision

During a free flight, δr grows with δv. In previous calculations, it was always as-
sumed that right after a collision δri and δvi were of the same order of magnitude
[31]. Under this assumption, in the δri just before a collision, the contribution
from δri just after the previous collision may be neglected compared to τiδvi,
where τi is the free-flight time of particle i. Note that τi is typically of the order
of 1/ν̄. Of course τiδvi will be comparable to δri after the previous collision if τi
is short. However this occurs only with a probability proportional to the density
and therefore may be neglected.

The assumption that δri and δvi just after a collision are of the same order
of magnitude, however, is only true for d− 1 components of δri − δrj , namely the
ones normal to v̂ij . The remaining components of δri and δrj , along v̂ij and in
the centre-of-mass coordinates, are, after a collision, larger by an order of τ than
the corresponding component of δvi, because Q, defined in equation (2.21), does
not act on centre-of-mass vectors, nor on perturbations of relative coordinates
parallel to the relative velocity. In these directions, the components of δv are
still of the same order of magnitude as before the collision, but the corresponding
components of δri have grown linearly during the preceding free flights. We will
show that this phenomenon affects the Kolmogorov-Sinai entropy, even at low
density.

The determinant of the transformation of the dN -dimensional volume element
projected onto δv depends on δr before the collision. δr may be assumed to
depend on δv as

δr = τ̄W · δv , (4.4)

with τ̄ = 1/ν̄ the average free-flight time. The matrix W can be split up into
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d × d matrices between specific particles, Wij . As particles collide and have free
flights, Wij changes. The volume element projected onto δv before the collision is
mapped to a projection of a volume element after the collision. The determinant
of this map depends on Wi,Wj ,Wij , and Wji, where the second index is omitted
if it is the same as the first.

After the collision, W is changed. The matrix W after the collision, W∗,
can be found by using the dynamics and equation (4.4) to express δr∗ just after
the collision in terms of δv∗, the collision matrices and W . Let S and Q be
the dN × dN -dimensional matrices which perform the transformations of S and
Q on the components of δr and δv along the colliding particles, as described in
equations (2.16)–(2.19) and act as the unit operator on the components belonging
to all other particles. The transformation can be written as

δv′ = (I + S) · δv + Q · δr (4.5)

= (I + S + τ̄Q ·W) · δv , (4.6)

δr∗ = (I + S) · δr = τ̄(I + S) · W · δv . (4.7)

Here, I is the dN × dN identity matrix. This leads to an expression for δr∗i as a
function of δv∗

i ,

δr∗ = τ̂W∗ · δv∗ , (4.8)

where W∗ can be expressed in terms of W and the collision matrices, as

W∗ = (I + S) · W · (I + S + τ̄Q ·W)−1 . (4.9)

Using (I + S)−1 = I + S, one may write this more conveniently as

W∗ = (I + S) · [W−1 + τ̄(I + S) · Q]−1 · (I + S) . (4.10)

At low densities, two particles which collide can be assumed to be uncorrelated
before the collision (Stoßzahlansatz). This means that all elements of Wij with
i 6= j are zero. After the collision there are in general non-zero elements in Wij .

During free flight Wi also changes. Let τi be the free-flight time of particle i
after the collision. Then, after the free flight,

{

W′
k = W∗

k + 1ν̄τk if k = i, j ,

W′
k = W∗

k if k 6= i, j .
(4.11)

Note that the change in δrk with k 6= i, j, due to free flights was already taken
into account at the last collision of particle k. The matrix W as it is calculated
here describes the connection between δri just before the next collision of particle
i and δvj just before the next collision of particle j.
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The matrix (I+S) ·Q is non-negative definite and symmetric. If W is positive
definite, so is its inverse. This means that W−1 + τ̄ (I +S) ·Q is positive definite,
as is its inverse. The coordinate reflection I + S is unitary, and therefore the
eigenvalues of (I + S) · W∗ · (I + S) are the same as those of W∗. Therefore,
W∗ is positive definite. By similar reasoning, a symmetric W is mapped onto a
symmetric W∗. Equation (4.11) also maps non-negative definite matrices onto
positive definite matrices, and symmetric ones onto symmetric ones. As, without
loss of generality, any initial conditions for W may be chosen, it is possible to
choose them such that W is positive definite and symmetric. This can be done,
for example, by choosing the initial W to be diagonal, with elements equal to 1.

The stretching factor due to one collision can be calculated from the determi-
nant of the transformation of the projection onto the perturbations of the relative
and centre-of-mass velocities, (δvij , δVij). From equation (4.6), one finds that
this is the determinant of I + τ̄ (I + S) · Q · W .

In the low density limit, and with Wij = 0, this is found to be equal to

Λ = w⊥⊥

(

2vτ̄

a

)d−1

cosd−3 θ . (4.12)

Here, θ is the angle between σ̂ and v, cos θ = σ̂ · v̂, and w⊥⊥ is equal to the
determinant of the part of (Wi + Wj)/2 between vectors that are orthogonal to
v̂ij before the collision. For d = 2,

w⊥⊥ = v̂ij⊥ · Wi + Wj

2
· v̂ij⊥ . (4.13)

This expression replaces (ν̄τ+)d−1, where τ+ = (τi+τj)/2, in previous calculations
[31]. In d dimensions, v̂ij⊥ must be replaced by a set of d− 1 vectors orthogonal
to v̂ij . The inner products are replaced by the determinant of the (d−1)× (d−1)
part of (Wi + Wj)/2 between those vectors.

4.3 Distribution functions

In order to calculate the Kolmogorov-Sinai entropy from equation (4.3), one needs
the distribution function of the single-collision stretching factor, as described by
equations (4.12) and (4.13). This may be derived from the joint distribution func-
tion of the collision parameters τi, τj , vi, vj , θ, and elements of Wi and Wj . In
the low-density approximation, the collision parameters are distributed accord-
ing to the equilibrium solutions of the Boltzmann equation, described in section
2.4.3. The distribution of the particle velocities is the Maxwell distribution. The
free-flight times of the particles are distributed exponentially, with the collision
frequency ν(v) depending on the velocity of the particle.

The distribution of w⊥⊥ can be found by demanding that the distribution
of elements of Wi as a function of vi is not changed by collisions and free flights
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with parameters distributed according to the solutions of the Boltzmann equation.
This yields a complicated non-linear integral equation for the elements of W . This
equation involves the distribution of angles between relative velocities of subse-
quent collisions of a particle with velocity vi, as well as the velocity dependence
of the collision frequency. The latter is only known numerically.

4.3.1 Approximation of the distribution of w⊥⊥

If one were to start with some initial distribution function for the elements of Wij

and to iterate it using the known distributions of the collision parameters, one
would find convergence to the solution of the integral equation. However, even
with a simple initial distribution, such iterations will quickly produce distribution
functions which can only be calculated numerically. In this section, a mean-field
type of approach is used to find an approximate distribution function. We start
with a simple distribution with one parameter, which approximates the average
distribution. The parameter is then chosen in such a way that the average of
the trace of W remains the same after a collision and free flights. The non-linear
terms in the equation for the distribution of the elements of W are neglected. The
equation is iterated a second time to include some of them. We estimate the size
of the remaining terms.

In principle it would be possible to use the determinant or some other scalar
function of W , instead of the trace. It is however much easier to write down
the map of the trace of W onto the trace of W∗ in equation (4.10) than it is to
write down a map of the determinant during free flights. Also, really only the
distribution of diagonal elements of W is needed. Under unitary coordinate trans-
formations, such as rotations and reflections, the trace of a matrix is conserved.

Let Wl be the matrix W with all rows and columns removed except for those
belonging to the indices specified by the list l, where l may represent any number
of indices. Similarly, let W(l) be the matrix W with all rows and columns removed
which belong to the indices specified by the list l.

From equation (4.11), the trace of W ′ can be found to satisfy

Tr(W ′) = Tr(W)∗ + dν̄τi + dν̄τj . (4.14)

From equation (4.10), the trace of W∗ can be found as a function of W . As the
trace is conserved under the coordinate reflection (I + S) · W · (I + S), one finds

Tr(W∗) =
∑

k

det(W−1 + τ̄ (I + S)Q)(k)

det(W−1 + τ̄(I1 + S)Q)
. (4.15)

In the low-density limit the mean free time becomes large, and only terms in which
the numerator contains the same power of τ̄ as the denominator can contribute.
The subdeterminant of (I + S) · Q with respect to its zero eigenvectors can be
divided out, leaving only the determinant of the remaining part of W , between
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vectors on which Q does not work. As only (I + S)Q in equation (4.15) contains
the collision normal, in the limit of vanishing density, the trace of W∗ does not
depend on θ, but only on v̂ij and the elements of W .

Let the dN -dimensional basis vectors in which the matrices are expressed be
numbered 1 through dN . Let the first dN -dimensional basis vector, ε1, be defined
as v̂ij in the relative coordinates, and the second (in d dimensions the second
through d-th), ε2, as v̂ij⊥ in the relative coordinates. W−1

(k) and W−1
(k2) represent

the matrix W−1 from which the rows and columns belonging to, respectively,
index k and both index k and index 2 are removed. The trace can be rewritten
as the sum over fractions of subdeterminants,

Tr(W∗) =
∑

k 6=2

det(W−1
(k2))

det(W−1
(2) )

. (4.16)

By writing the inverse of the inverse matrix and by working out the determi-
nant of Wl, it is possible to prove by using induction over the number of indices
represented by l that

detW−1
(l) = detWl detW−1 . (4.17)

From equations (4.17) and (4.16) one finds, for d = 2,

Tr(W∗) =
∑

k 6=2

det(Wk2)

detW2
(4.18)

= Tr(W) − 1

w⊥⊥
ε2 · W2 · ε2 . (4.19)

In the d-dimensional case ε2 is replaced by d − 1 vectors, and equation (4.19)
becomes somewhat more complicated.

The change in off-diagonal elements at a collision can be found from a deriva-
tion similar to that of the trace elements in equation (4.19). If p, q 6= 2, for
d = 2,

ε∗p · W∗ε∗q = εp · W · εq −
(εp · W · ε2)(ε2 · W · εq)

ε2 · W · ε2
. (4.20)

The expression for d = 3 is similar. If p or q is equal to 2, the off-diagonal element
vanishes. Off-diagonal elements between different particles are not affected by free
flights, as is apparent from equation (4.11).

The collisions are most conveniently expressed in the basis which consists of
v̂ij and the d − 1 vectors v̂ij⊥ orthogonal to it. We therefore also express each
Wij in this basis.
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Mean-field approximation

Assume that just before a collision, the Wi are equal to their averages and Wij

are equal to zero. If the distribution of the angle between the relative velocities of
two consecutive collisions is (nearly) isotropic, the two average diagonal elements
are (approximately) equal. In this case, the matrix is

Wij = w̄1δij , (4.21)

where δij is the Kronecker delta function. The initial distribution used in the
iteration process is a product of Dirac delta functions at the average value w̄ for
the diagonal elements and zero for the off-diagonal elements. In a similar way,
an exponential distribution function can be used, with average w̄, to test the
sensitivity to the width of the distribution.

Using equations (4.10) and (4.11) one finds that after the collision and free
flight, in the basis consisting of v̂ij and the d − 1 vectors orthogonal to it, the
values of Wkl are changed according to

W
′
kl =











































(

(w̄ + ν̄τk) 0

0 ( 1
2 w̄ + ν̄τk)1d−1

)

if k = l = i ∨ k = l = j ,

(

0 0

0 − 1
2 w̄1d−1

)

if (k, l) = (i, j) ∨ (k, l) = (j, i) ,

w̄ 1 δkl if k 6= i, j ∨ l 6= i, j ,

(4.22)

where 1d−1 is used to denote the (d− 1)-dimensional identity matrix. This equa-
tion implies a distribution for the elements of W′

ij expressed in the basis belonging
to the next collision, which consists of v̂′

ij and the d − 1 vectors orthogonal to
it, v̂′

ij⊥. The new distribution of the matrix elements is the distribution of Wkl

in the coordinates of the next collision, Ri · W′
kl · RT

i , where Ri is the rotation
matrix associated with the rotation from the coordinate system using the post-
collisional relative velocity of a collision to the system using the pre-collisional
relative velocity of the next collision of the same particle. In two dimensions, this
matrix is characterised by the angle φi between the relative velocities at the two
collisions,

Ri =

(

cosφi sinφi

− sinφi cosφi

)

. (4.23)

The distribution of this angle can be denoted by pφ(φi, vi). In three dimensions,
the angle φi is replaced by two angles.
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From this approximation a distribution function of w⊥⊥ can be found, which
depends on w̄. At the next collision, for d = 2, it is equal to the distribution of

w′
⊥⊥ =

1

2
v̂′

ij · (W′
i + W′

j) · v̂′
ij (4.24)

=
1

2
(0, 1) · (Ri · W′

i · RT
i + Rj · W′

j · RT
j ) · (0, 1) (4.25)

= w̄

[

1 − 1

4
(cos2 φi + cos2 φj)

]

+ ν̄τ+ . (4.26)

The distribution of w⊥⊥ can be approximated by the distribution of the right-
hand side of the equation. In three dimensions, the rotation matrix is more
complicated, and so equation (4.26) becomes more complicated. The resulting
expressions are not reproduced here.

From equation (4.22) one can find the difference between the areasonable
verage traces of W ′ and W . In the reasonable approximation that 〈cos2 φi〉 = 1

2 ,

〈Tr(W ′)〉 − Tr(W) = 2d− (d− 1)w̄ , (4.27)

where the notation 〈.〉 is used to denote an average. As the average trace must
not be changed, one finds for w̄ the approximation

w̄(0) =
2d

d− 1
=

{

4 if d = 2 ,

3 if d = 3 .
(4.28)

Note that the result for w̄ would have been the same if an initial exponential
distribution was used. The resulting distribution function for w⊥⊥, however is
different in that case. The distribution function implied by equation (4.26) for
w⊥⊥ at the next collision can be used to estimate the Kolmogorov-Sinai entropy
from equations (4.3) and (4.12).

The approximation so far is fairly crude. The non-linearity of equation (4.10)
has been partially neglected by using the averages of the off-diagonal elements.
In the second term in the calculation of the trace in equation (4.19) only the
block diagonal terms, those of the form v̂⊥ij ·W2

i · v̂⊥ij , were involved. In reality,
since W is positive definite, the terms involving off-diagonal elements will produce
strictly negative contributions to the average of the trace in equation (4.19).

A better approximation of the average value can be found by iterating the
equation for the distribution a second time. The distribution of Ri ·W′

klRT
i can be

used to calculate the trace of W ′′. The colliding particles are independent of each
other before the collision, but not independent of the particles they encountered
before. These particles, which are not directly involved in the collision, now
contribute to the change in the trace, through the second term on the right-hand
side of equation (4.19). We find that for d = 2 the trace in the low density
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approximation satisfies

〈Tr(W ′′)〉 − 〈Tr(W ′)〉 = −3w̄ +
〈[

2ν̄2(τ2
i + 4τiτj + τ2

j ) + 10ν̄(τi + τj)w̄

+ 8w̄2 − 2w̄ν̄(τi cos2 φj + τj cos2 φi) − w̄2(cos2 φi + cos2 φj)
]

/ [

2ν̄(τi + τj) + 4w̄ − cos2 φi − cos2 φj

]〉

. (4.29)

This yields an equation for w̄ that is better than equation (4.28).
More iterations would produce more terms and will further reduce the value

of w̄. A similar but far more complicated expression can be found for d = 3 from
equations (4.19), (4.22), and the general form of the three-dimensional rotation
matrix. The results would be better if the distribution were iterated again, but
this would produce expressions of complexity increasing exponentially with the
number of iterations. One more iteration would add four angles and four free-
flight times to the expression in equation (4.29). The second iteration already
produces a reasonable result. Also, after one more iteration, the expression for
w′′

⊥⊥ is quite complicated and contains twelve correlated variables, six rotation
angles and six free flights. We therefore continue using the distribution of w′

⊥⊥,
but with the value of w̄ found from equation (4.29).

The integration over the distribution of φi, φj , τi, and τj can be done numeri-
cally. The change in the trace is zero for for w̄ equal to

w̄
(1)
1 =

{

3.009 if d = 2 ,

2.107 if d = 3 .
(4.30)

If the contributions to the trace from the off-diagonal elements involving the other
particles from the previous collisions, through the second term on the right-hand
side of equation (4.19), are ignored, the result is changed significantly. In this
case,

w̄
(1)
0 =

{

3.408 if d = 2 ,

2.639 if d = 3 .
(4.31)

At a collision between i and j, the off-diagonal elements between particles i and
k produce significant changes to the diagonal elements of W′

kk . It is therefore
expected that contributions from particles involved in collisions before the previ-
ous collision will also be significant. Also, if the other particle from the previous
collision of particle i has collided since, this has an effect on Wi.

Off-diagonal elements from earlier collisions

At a collision between particles q and r, the change in the trace of W , calculated
in equation (4.19), is affected by the elements of W between q or r, and other
particles. After a collision between two particles, non-zero off-diagonal elements
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Figure 4.1: At the collision between particles q and r, the off-diagonal elements between
q and particle s contribute to the change in the trace, as shown in equation (4.19). These
elements date from the collision between particles x and y, in the common history of q
and s. At some point in the past, there were elements between a particle i in the history
of s and a particle k in the history of q when j, another particle in the history of s,
collided with i. After the collision there were elements between j and k, which, through
more collisions, eventually lead to elements between s and q. The size of the elements
between s and q can be estimated using equations (4.36) and (4.37).

exist between these particles. After a collision between i and j, off-diagonal
elements between particles i and k generate off-diagonal elements between j and
k, due to the exchange between the δvi and δvj . If non-zero off-diagonal elements
exist between i and k as well as j and l before the collision, after the collision
non-zero elements will exist between k and l. A diagrammatic representation of
the collision sequence is shown in figure 4.1.

In order to estimate how much such terms contribute to the change in the trace
at a collision involving particle k, the typical magnitude of the off-diagonal ele-
ments at a collision must be investigated. One may estimate the typical changes
in the off-diagonal blocks Wik and Wjk at a collision between i and j, by esti-
mating the changes in the trace of the off-diagonal blocks. The typical size of
the off-diagonal elements can be characterised by the trace of the off-diagonal
block Wik . The diagonal elements of the off-diagonal blocks can be found from
equation (4.20). Using the fact that Wij before the collision is zero, one finds, in
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two dimensions, for the elements of W between δri and δvk

v̂ij · W′
ik · ê = v̂ij · Wik · ê

− (v̂ij · Wi · v̂ij⊥)[v̂ij⊥ · (Wik − Wjk) · ê]

v̂ij⊥ · (Wi + Wj) · v̂ij⊥
, (4.32)

v̂ij⊥ · W′
ik · ê =

1

2
v̂ij⊥ · (Wik − Wjk) · ê

− [v̂ij⊥ · (Wi − Wj) · v̂ij⊥][v̂ij⊥ · (Wik − Wjk) · ê]

2v̂ij⊥ · (Wi + Wj) · v̂ij⊥
. (4.33)

Here, ê can be any vector in two dimensions. If Wik has non-zero elements, then
Wjk does not, since the particles i and j were uncorrelated before the collision.
If Wik has non-zero elements after the collision, both W′

ik and W′
jk have non-zero

elements.
From equation (4.32) the traces after the collision may be found,

Tr(W′
ik) =

1

2
(v̂⊥ij · Wik · v̂⊥ij)

[

1 − v̂⊥ij · (Wi − Wj) · v̂⊥ij

v̂⊥ij · (Wi + Wj) · v̂⊥ij

]

+ v̂ij · Wik · v̂ij

− (v̂⊥ij · Wik · v̂ij)
v̂ij · Wi · v̂⊥ij

v̂⊥ij · (Wi + Wj) · v̂⊥ij
, (4.34)

Tr(W′
jk) = −1

2
(v̂⊥ij · Wik · v̂⊥ij)

[

1 − v̂⊥ij · (Wi − Wj) · v̂⊥ij

v̂⊥ij · (Wi + Wj) · v̂⊥ij

]

− (v̂ij · Wj · v̂ij⊥)(v̂ij⊥ · Wik · v̂ij)

v̂⊥ij · (Wi + Wj) · v̂⊥ij
. (4.35)

It is fair to assume that the off-diagonal elements of Wik tend to be smaller than
the diagonal elements. Also, the diagonal elements of Wi−Wj are, typically, much
smaller than the diagonal elements of Wi + Wj . The terms with a quotient of
these can therefore be neglected in this rough estimation. Further, the d diagonal
elements of Wik are typically of the same size. These approximations leave us
with the general expressions

Tr(W′
ik) ≈ d+ 1

2d
Tr(Wik) , (4.36)

Tr(W′
jk) ≈ d− 1

2d
Tr(Wik) . (4.37)

In addition, if both Wik and Wjl have non-zero elements, W′
kl also has non-

zero elements, which are due to the second term on the right-hand side of equation
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(4.20). The off-diagonal elements generated in this way are small compared to
the elements generated from equations (4.36) and (4.37). In fact, they are smaller
than the terms neglected from equations (4.34) and (4.35), because they contain
products of the off-diagonal elements which are small compared to the diagonal
elements. As they appear quadratically in the change in the trace [see equation
(4.19)], despite their quadratically larger number, they may be neglected.

From equations (4.36) and (4.37) an estimate can be made of the contributions
to the change in the trace in equation (4.19) from collisions before the previous
collision, compared to the contributions from just the previous collisions. The
ratio between the total contributions from off-diagonal elements to the change in
the trace and the contributions from just the previous collisions is denoted by α.

In every collision in the history, off-diagonal elements are created between
the two colliding particles and existing elements are reduced in magnitude and
passed on according to equations (4.36) and (4.37). In order to estimate the
consequences of Wqs at a collision between q and r, one has to find the path
from the collision between particles x and y to the present collision between q
and r as well as the path from the collision between x and y to the particle s
at the time of the collision between q and r, following a sequence of collisions,
through which the off-diagonal element between particles q and s is affected. A
diagrammatic representation of this is shown in figure 4.1. To this path belongs
an approximate reduction of the size of the off-diagonal element, a product of
factors of (d+ 1)/(2d) or (d− 1)/(2d) for each collision in the paths. If the path
continues with the same particle, there is a factor of (d + 1)/(2d). If it switches
to the other particle, the factor is (d− 1)/(2d).

Every different product with the same number of factors follows a different
path of that length, and hence belongs to a different present particle. The prod-
uct of the two factors of two paths starting from x and y gives the order of
magnitude of the off-diagonal element between i and k particles. The square
of this factor then gives the relative size of the contribution to the trace at the
collision between i and j. If a collision between two particles is now p collisions
ago, then, on average, the other part of the future of that collision has also had
p collisions. Summing over all the different paths of length p, one finds that the
relative contribution from collisions that occurred p collisions before the previous
collision can be approximated as

αp ≈
(

d2 + 1

2d2

)2p

. (4.38)

Summing over all p gives the estimate

α =
∑

p

αp ≈ 4d4

(3d2 + 1)(d2 − 1)
. (4.39)

The contributions from the previous collisions in equations (4.19) and (4.29)
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can be multiplied by α, to find an estimate for the total contribution of all par-
ticles with which i and j have a common history. This is an admittedly crude
estimate for the contributions, yet should give better results than just neglecting
the history before the previous collision. The terms in equation(4.29) that are
due to the off-diagonal block between the colliding particles and other particles
may be multiplied by α. With this correction it is found that

w̄(1)
α =

{

2.929 if d = 2 ,

1.947 if d = 3 .
(4.40)

The distribution function of w⊥⊥ contains an uncertainty in its width, which
affects the results of the calculation. When starting from the average, with every
next iteration of the equation for the distribution function, the distribution be-
comes wider. w⊥⊥ looks like a sum of several weighted free-flight times for each
particle. If one starts from exponentially distributed diagonal elements, rather
than simply the averages, the distribution becomes narrower with every iteration.
By starting from an exponential distribution, one may estimate the consequences
of the width of the distribution of the elements. With an initial exponential
distribution, one finds

w̄(1)e
α =

{

2.426 if d = 2 ,

1.676 if d = 3 .
(4.41)

By substituting the distribution function induced by one iteration, together
with the average, into equation (4.3) one can now estimate the Kolmogorov-Sinai
entropy.

4.4 Results and discussion

As the free-flight times are inversely proportional to the density, w⊥⊥τ̄
d−1 will be

inversely proportional to nd−1. This leads to a general form for the Kolmogorov-
Sinai entropy,

hKS = Nν̄A[− log(nad) +B] . (4.42)

In earlier calculations [31], the values for A were calculated accurately. The
results for B, however, are unsatisfactory. The values of A are easily found from
equations (4.3), (4.12), and the dependence of the collision frequency on n,

A =
d− 1

2
. (4.43)

If w⊥⊥ is taken to be equal to τ+, the results for B of reference [31] are reproduced,

h̃KS =
Nν̄

2

〈

log

[

(

2vijτ+
a

)d−1

cosd−3 θ

]〉

, (4.44)
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which yields

B̃ ≈
{

0.209 if d = 2 ,

−0.583 if d = 3 .
(4.45)

From molecular dynamics simulations the Kolmogorov-Sinai entropy can be
calculated [31, 37]. It is found that

hs
KS =

{

(0.499± 0.001)Nν̄
(

− lognad + 1.366± 0.005
)

if d = 2 ,

(1.02± 0.02)Nν̄
(

− lognad + 0.29± 0.01
)

if d = 3 .
(4.46)

In the calculation presented here, the results of equation (4.44) have to be
amended, to become

hKS =
Nν̄

2

〈

log

[

w⊥⊥

(

2vij τ̄

a

)d−1

cosd−3 θ

]〉

. (4.47)

From equations (4.26) and (4.30), one finds, after numerical integration, that

B
(1)
1 ≈

{

1.592 if d = 2 ,

0.476 if d = 3 ,
(4.48)

If the contributions from the off-diagonal elements in equation (4.19) are in-
creased by the estimate of the remaining terms, a factor of α, the results change
to

B(1)
α ≈

{

1.572 if d = 2 ,

0.427 if d = 3 .
(4.49)

This more closely reproduces the simulation results shown in equation (4.46).
After every extra iteration in the calculation, the distribution becomes wider

and therefore the average of the logarithm of w⊥⊥ becomes smaller compared to
the logarithm of the average. Due to this, cutting off the process after two itera-
tions produces a result for the Kolmogorov-Sinai entropy which is too high. Note
that also a wider spread of the off-diagonal elements leads to larger contributions
from the off-diagonal terms in equation (4.19), and therefore to a smaller w̄, which
yields a smaller value for B. Equation (4.48) gives an upper bound for B.

By starting from a wider distribution of diagonal elements, instead of a product
of Dirac delta functions, an estimate can be made of the effects of the width of
the distribution. From equation (4.41) an estimated lower bound is found,

B(1)e
α ≈

{

1.370 if d = 2 ,

0.273 if d = 3 ,
(4.50)
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In chapter 6, a more rigorous lower bound will be derived.
From these two estimated bounds, a final estimate of B may be made, includ-

ing error bounds,

B =

{

1.47± 0.11 if d = 2 ,

0.35± 0.08 if d = 3 .
(4.51)

The errors could be reduced by using distribution functions for w⊥⊥ that have
been iterated a larger number of times. The values of the Kolmogorov-Sinai
entropy found in the molecular dynamics simulations, equation (4.46), are well
within the error bounds of equation (4.51).

4.5 Conclusions

In this chapter, an estimate is presented of the Kolmogorov-Sinai entropy of
dilute hard sphere gases in equilibrium, which to leading order is of the form
Nν̄A(− logn + B). For the first time, B was estimated in a satisfactory way,
with results which are consistent with simulation results. It was found that, for
d = 2, B = 1.47 ± 0.11 and, for d = 3, B = 0.35 ± 0.08. The values for B found
in the calculation presented here are in good agreement with the results found
in molecular dynamics simulations [37]. Also, an upper bound was found for B,
that is, B < 1.592 if d = 2, and B < 0.476 if d = 3. In chapter 6 a lower bound
is derived.

The smaller Lyapunov exponents of this system that are not due to Gold-
stone modes are proportional to ν̄. They contribute significantly to B in the
Kolmogorov-Sinai entropy. The calculation of B presented here shows effects
which could therefore affect the behaviour of these exponents in the leading or-
der. A calculation of such effects is presented in chapter 6.

It should be noted that effects such as the ones described here cannot affect the
Lyapunov spectrum of the high-dimensional Lorentz gas, calculated in chapter 5,
because the scatterers in that system are uniformly convex. But they are generic
for the Lyapunov spectra of systems consisting of many particles.



Chapter 5
The dilute d-dimensional

Lorentz gas

This chapter is based on Physical Review E 70, 036209 (2004) [46].

5.1 Introduction

In this thesis, a great deal of attention is given to systems consisting of many
moving particles. However, in phase space this corresponds to the motion of a
single point particle among a high-dimensional array of scatterers. From this per-
spective, a system of interacting hard spheres or disks is not all that different from
a high-dimensional Lorentz gas, as noted already many years ago by Sinai [47]. In
phase space both systems are represented by a point particle moving at constant
speed between elastic collisions with hard scatterers. The only, important, differ-
ence is that in the high-dimensional Lorentz gas the scatterers are hyper spheres,
which have a uniform curvature, whereas for the hard disks or spheres the scat-
terers are hyper cylinders, which are curved in a few directions only, but flat in
all others. In either case the convex shape of the scatterers makes the system
strongly chaotic. This similarity between cylindrical scatterers and many-particle
systems is explained in more detail in chapter 6.

The difference in the shape of the scatterers has important consequences for

57
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calculations. The scatterers in the Lorentz gas are invariant under rotations in
configuration space, which simplifies calculations enormously. Further, the uni-
form convexity of the Lorentz-gas scatterers, in contrast to the hyper cylinders of
the hard-sphere systems, strongly simplifies proofs of ergodic and chaotic proper-
ties [48]. It also simplifies the low-density approximation, because it removes the
technical problems with the low-density approximation that occur in hard-sphere
systems and were described in chapter 4. Yet, it is of interest to perform an
explicit calculation of the full Lyapunov spectrum of a high-dimensional dilute
Lorentz gas and compare it to the spectra of hard-sphere systems. In addition,
the methods used in this chapter may well be amenable to refinements, so as to
make them applicable to systems of many moving particles.

In this chapter, the behaviour of a dilute, random, non-overlapping Lorentz
gas is studied in an arbitrary number of dimensions d. For large d, this system
has many degrees of freedom, while, largely due to the spherical symmetry of the
scatterers, it is still possible to do exact calculations. The full Lyapunov spectrum
is calculated in the absence of any external fields.

5.2 Dynamics of the Lorentz gas

The system consists of a fixed number of randomly placed, spherical scatterers
with radius a at a (small) density n in d dimensions. The discussion is restricted to
the case of non-overlapping scatterers, where, a priori, each configuration without
overlap among any two scatterers is equally likely. The system is assumed to
be large. As long as it is finite, our preferred boundary conditions are periodic
ones, but our considerations allow taking the infinite-system limit at fixed density
without any problem. A single point particle moves between the scatterers, with
speed v, undergoing a specular reflection at each collision. For given scatterer
positions, the phase space is represented by the position and velocity of the point
particle, γ = (r,v). The tangent space at any point in phase space can be
represented by the perturbations in these quantities, δγ = (δr, δv).

Between collisions with the scatterers, the particle moves freely, so ṙ = v

and v̇ = 0. At a collision with collision normal σ̂, the particle is reflected by a
scatterer, as shown in figure 5.1, with resulting velocity v′ = (1 − 2σ̂σ̂) · v. Here
1 is the d× d identity matrix. From equation (1.3) the temporal behaviour of δγ
can be derived. During free flight,

δṙ = δv , (5.1)

δv̇ = 0 . (5.2)

At a collision, δv is also reflected. On the tangent trajectory, the perturbation
of the pre-collisional position with respect to the reference trajectory leads to a
perturbation in the collision normal and the collision time, which shows up in the
perturbation of the post-collisional velocity. The perturbation of the collision time
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PSfrag replacements

aσ̂

a(σ̂ + δσ̂) v
δr

v + δv

v′

vδt

v′ + δv′

Figure 5.1: Geometry of a collision. The collision normal σ̂ is the unit vector pointing
from the centre of the scatterer to the moving point particle.

also leads to a difference in the post-collisional position (measured at the instant
of collision on the tangent trajectory) from the pre-collisional one (measured at
the instant of collision on the reference trajectory). As a result, the tangent-space
vectors are transformed according to [6, 49]

δr′ = (1 − 2σ̂σ̂) · δr , (5.3)

δv′ = (1 − 2σ̂σ̂) · δv + 2Q · δr , (5.4)

in which the collision matrix Q is defined by

Q =
1

a

(

vσ̂ − σ̂v +
v2

v · σ̂ σ̂σ̂ − (v · σ̂)1

)

. (5.5)

From these equations it follows that, if δr and δv are both parallel to v before
the collision, δr′ and δv′ are parallel to v′ after the collision and their absolute
values are the same as before. These are two linearly independent perturbations,
giving rise to two zero Lyapunov exponents. They result from time-translation
invariance and from invariance of the trajectories in configuration space under a
scaling of the velocity. All other Lyapunov exponents for the Lorentz gas are non-
zero. As a consequence of the conjugate pairing rule, d − 1 of them are positive
and the remaining d− 1 are negative with the same absolute values.
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5.3 The largest Lyapunov exponent at low

densities

To calculate the non-zero Lyapunov exponents, one needs to consider what hap-
pens to an initial perturbation δγ(0) in tangent space in the limit of infinite
time. As an introduction, we first review the calculation of the largest Lyapunov
exponent at low scatterer densities.

An initial perturbation which is not parallel to v generically has a non-
vanishing component along the most rapidly growing eigenvector of the time evo-
lution operator in tangent space. Therefore, its evolution for long times will be
dominated by the largest Lyapunov exponent. To calculate this time evolution,
it suffices to consider the growth of the projection of the growing vector onto a
subspace of tangent space. It turns out to be convenient to use the projection
onto δv for this.

Define δri and δvi as the tangent-space vectors just after collision i, with
collision normal σ̂i, occurring a time τi after collision i − 1. Let θi be the angle
between σ̂ and the velocity before the collision,

σ̂i · v = −v cos θi . (5.6)

Before collision i, one has

δr−i = δri−1 + τiδvi−1 , (5.7)

where δr−i is used to indicate the perturbation in the position just before collision
i. From equations (5.4) and (5.5) it follows that, after the (i − 1)-th collision,
δvi−1 typically is of the order of δri−1v/a. This is different from the case of
hard spheres, where there are many directions on which Q does not work. In the
case of the Lorentz gas there is only one such direction, the one belonging to the
time-translation zero mode.

At low densities, the mean free time is of the order of 1/(nad−1v). Therefore, to
leading order in the density the first term on the right-hand side of equation (5.7)
may be neglected in the calculation of the positive Lyapunov exponents. Similarly,
in equation (5.4) the first term on the right-hand side becomes negligible at low
density, and equations (5.4) and (5.7) may be combined into

δvi = 2τiQi · δvi−1 . (5.8)

The contributions to the Lyapunov exponents of the terms neglected in this ap-
proximation are at least one order of n higher than the terms of leading order
[18]. In addition, in this approximation, the time-reversal symmetry has been de-
stroyed, hence only the positive Lyapunov exponents can be calculated. However,
in the limit of vanishing density, the results for these will be exact.

The action of Qi on δvi may be described in the following way. Working on
the component along vi it yields zero. It multiplies the component normal to v
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in the plane through vi and σ̂ with a factor v/(a cos θi) and rotates the vector
component to the direction in this plane normal to v′

i. Finally, it multiplies all
other vectors δvi normal to v̂i and σ̂ with v cos θi/a. Define the unit vector
orthogonal to v in the plane spanned by v and σ̂ as

ρ̂i =
(1− v̂iv̂i) · σ̂i

| sin θi|
. (5.9)

One may rewrite Qi as

Qi =
v

a

(

cos θi(1 − v̂iv̂i − ρ̂iρ̂i) +
1

cos θi
ρ̂′iρ̂i

)

. (5.10)

Combining this with equations (5.3) and (5.4), one finds that the velocity devia-
tions to leading order in n evolve according to

δvi =
2vτi
a

(

cos θi(1 − v̂iv̂i − ρ̂iρ̂i) +
1

cos θi
ρ̂′iρ̂i

)

· δvi−1 . (5.11)

The largest Lyapunov exponent may now be calculated to leading order in the
density as

λ1 = ν̄d

〈

log
|δvi|

|δvi−1|

〉

, (5.12)

where ν̄d is the average collision frequency for the system and the brackets indicate
an average over the collision sequence, which will be discussed in more detail in
section 5.4. The result for the largest exponent in d dimensions will appear as a
special case of the calculations presented in the next section.

5.4 Partial stretching factors

The stretching factor is defined as the factor by which the expanding part of
tangent space expands with time. This quantity can be used to calculate the
Ruelle pressure as well as the sum of the positive Lyapunov exponents, equal
to the Kolmogorov-Sinai entropy in systems without escape [19, 20]. In chapter
4, the stretching factor for a system of hard spheres was used to calculate the
Kolmogorov-Sinai entropy for that system.

Define the partial stretching factor ΛS(r,v, t) of a p-dimensional subspace S
of the 2d-dimensional tangent space as the factor by which the volume of an
infinitesimal p-dimensional hyper cube in this subspace has increased after a time
t. Unless S is orthogonal to some eigenvector associated with one of the p largest
Lyapunov exponents, the partial stretching factor for long times will be dominated
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by the p most unstable directions in tangent space, in other words, by the p largest
Lyapunov exponents. Explicitly, one has the identity

p
∑

i=1

λi = lim
t→∞

1

t
log ΛS(r,v, t) . (5.13)

As in the case of the largest Lyapunov exponent, where we could consider the long
time growth of a basically arbitrary vector in tangent space, we may choose the
subspace S in the way that is most convenient to us. And, as before, we choose
S as a subspace of the space spanned by velocity deviations perpendicular to v.

The partial stretching factor just after collision N is the product of the partial
stretching factors of the collisions 1 through N . These depend on the relative
orientations of v, σ̂, and the image of S. One can write

ΛS(r,v, tN ) =

N
∏

i=1

Λ(i)
p (v, τi, θi, αi) , (5.14)

in which αi is the projection angle of ρ̂i onto the image of S after the (i− 1)-th
collision. The subspace S can be split into a (p−1)-dimensional subspace normal
to ρ̂i and a 1-dimensional subspace spanned by the projection of ρ̂i onto S. From
equation (5.11) one finds that the former contributes a factor of (τi cos θi)

p−1 to
the partial stretching factor. The projection of ρ̂i onto the image of S can be
split into components perpendicular and parallel to ρ̂i. The former grows with
2vτi cos θi/a and the latter with 2vτi/(a cos θi). The partial stretching factor thus
becomes

Λ(i)
p (v, τi, θi, αi) =

(

2vτi
a

)p

cosp−1 θi

√

(sinαi cos θi)2 +

(

cosαi

cos θi

)2

. (5.15)

From this expression one can calculate the Lyapunov exponents and obtain asymp-
totic approximations for high dimensionality.

5.4.1 Lyapunov exponents

The sum of the p largest Lyapunov exponents can be calculated by substituting
equation (5.14) into equation (5.13),

p
∑

i=1

λi = lim
tN→∞

1

tN

N
∑

i=1

log Λ(i)
p (v, τi, θi, αi) , (5.16)

where tN is the time at which the N -th collision occurs.
In the low-density limit, the collisions in the Lorentz gas are uncorrelated and

therefore the time average in equation (5.16) can be replaced with an ensemble
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average,

p
∑

i=1

λi =

∫ ∞

0

dτ

∫ π

2

0

dθ

∫ π

2

0

dα νp(τ, θ, α; v) log Λ(i)
p (v, τ, θ, α) . (5.17)

Here νp(τ, θ, α; v) is a probability distribution, describing the probability density
per units of time and angle for collisions with the parameters τ, θ, and α at a
given velocity v. The index p is attached to remind the reader of the dependence
of the distribution of α on the dimensionality of the subset S. A rigorous proof of
the theorem used to derive equation (5.17) has been given by Crisanti, Paladin,
and Vulpiani [50].

5.4.2 The distribution of free-flight times

To lowest order in the density of scatterers, collisions are uncorrelated; effects of
re-collisions appear in the Lyapunov exponents only at higher orders. With in-
creasing d, these higher-density corrections become even smaller, since the prob-
ability of a return to a scatterer decreases rapidly. In this approximation, the
time of free flight between consecutive collisions is distributed exponentially. In
addition, the distribution of the angles θ and α is independent of that of the
free-flight time, the direction of the incident velocity and the orientation of the
pre-collisional image of S. The probability density for colliding at angle θ is pro-
portional to the differential cross-section. In the distribution of free-flight times
it contributes a factor of

nad−1v Od−1 sind−2 θ cos θ dθdt . (5.18)

Here Om is the (m−1)-dimensional surface area of the m-dimensional unit sphere,
i. e.,

Om =
2π

m

2

Γ
(

m
2

) . (5.19)

Finally, the probability distribution of the projection angle α of ρ̂ onto the image of
S after i−1 collisions may be identified with the fraction of the (d−1)-dimensional
unit sphere that has a projection angle between α and α+ dα, i.e.,

ρ(α) =







Od−1−pOp

Od−1
sind−2−p α cosp−1 α if p < d− 1 ,

δ(α) if p = d− 1 ,
(5.20)

where δ(α) is the Dirac delta function. Combining equations (5.18) and (5.20)
with the exponential distribution of the free-flight times, one finds, for p < d− 1,

νp(τ, θ, α; v) = 2nad−1v Od−1−pOp ν̄d exp(−ν̄dτ )

× sind−2 θ cos θ sind−2−p α cosp−1 α , (5.21)
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where the average collision frequency has the explicit form

ν̄d =
nad−1v Od−1

d− 1
. (5.22)

Note that Od−1/(d − 1) is equal to the volume of the (d − 1)-dimensional unit
sphere, so ad−1Od−1/(d− 1) is the total cross-section for a collision with a scat-
terer.

5.5 The spectrum

Substituting equations (5.15) and (5.21) into equation (5.17) yields an expression
for the sum of the p largest Lyapunov exponents,

p
∑

i=1

λi =

∫ ∞

0

dτ

∫ π

2

0

dθ nad−1v Od−1ν̄d exp(−ν̄dτ ) sind−2 θ cos θ

×
[

p log

(

2vτ

a

)

+ (p− 1) log cos θ

]

+

∫ π

2

0

dθ

∫ π

2

0

dαnad−1v Od−1−pOp sind−2 θ cos θ sind−2−p α cosp−1 α

× log

[

(sinα cos θ)2 +
(cosα

cos θ

)2
]

. (5.23)

The first integral can easily be carried out analytically. The second integral is
more difficult. It can be simplified in special cases, as described in section 5.5.1,
or approximated, as described in the remainder of this section.

5.5.1 The Kolmogorov-Sinai entropy

By taking p = d − 1, one can calculate the sum of all the positive exponents,
the Kolmogorov-Sinai (KS) entropy. Since the distribution of α now is a delta
function, the second term in equation 5.23 becomes

−
∫ π

2

0

dθ nad−1v Od−1−pOp sind−2 θ cos θ sind−2−p α cosp−1 α log cos θ

(5.24)

Performing the integrals yields

d−1
∑

i=1

λi =
aν̄d

2v

{

2(d− 1)

[

− log

(

nadOd−1

2(d− 1)

)

− γ

]

− (d− 3)

[

ψ(0)

(

d+ 1

2

)

+ γ

]

}

. (5.25)
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Here ψ(i)(x) is the (i+ 1)-th derivative of log Γ(x); ψ(i)(x) = [log Γ(x)](i+1). This
reproduces the results of van Beijeren, Latz, and Dorfman [18–20].

5.5.2 Lower bound

A lower bound for the Lyapunov exponents can be derived by assuming that the
minimum growth of the tangent-space vector is realised for every collision. The
minimum growth is the growth in the directions perpendicular to σ̂ and v. This
yields

λd−1 > λ− , (5.26)

with λ− defined by

λ− =
ν̄d

2

[

− 2 log
(aν̄d

2v

)

− 3γ − ψ(0)

(

d+ 1

2

)]

. (5.27)

The function ψ(0)(d+ 1/2) for large d behaves as log d. Therefore, the log ν̄d

term dominates the behaviour of λ−, and λ− for large d behaves asymptotically
as −ν̄d log ν̄d.

In a system of high dimensionality, the exponents are dominated by the direc-
tions perpendicular to v and σ̂. They should behave as λ− with a small correction.

5.5.3 High dimensionality

The integrals in equation (5.23) can be estimated for large d and arbitrary p. For
large numbers of dimensions, the distribution of θ is sharply peaked near θ = π/2.
The argument of the logarithm in the second term of equation (5.23) is therefore
dominated by the 1/ cos2 θ term. The range of α where the other term dominates
is of the order of 1/d, and therefore that term can be neglected. This leads to

p
∑

i=1

λi ≈ pλ− +

∫ π

2

0

dθ

∫ π

2

0

dαnad−1v Od−1−pOp sind−2 θ cos θ

× sind−2−p α cosp−1 α (−2 log cos θ + log cosα) , (5.28)

which yields, after performing the integrals,

p
∑

i=1

λi ≈
ν̄d

2

[

2γ − ψ(0)

(

d− 1

2

)

+ 2ψ(0)

(

d+ 1

2

)

+ ψ(0)
(p

2

)

]

+ pλ− .

(5.29)

For the largest exponent this means that the behaviour for large d is approx-
imately

λ1 ≈ λ− + 1
2 ν̄d

(

log d+ γ − 5
2 log 2 − 1

2

)

. (5.30)
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Figure 5.2: The scaled spectrum of positive Lyapunov exponents for several values of
the dimensionality d at density n = 0.01/a2.

This behaviour is shown in the uppermost curve in figure 5.3.
The smallest exponent is equal to the Kolmogorov-Sinai entropy minus the

sum of the first d − 2 exponents. In the high-dimensionality limit, the smallest
positive exponent behaves as

λd−1 ≈ λ− +
ν̄d

2d
. (5.31)

This is illustrated in figure 5.5. The p-th exponent can be calculated by subtract-
ing the expression for the sum of the first p− 1 exponents from that for the first
p ones. This results in

λp ≈ λ− +
ν̄d

2

[

ψ(0)
(p

2

)

− ψ(0)

(

p− 1

2

)]

. (5.32)

For the first few exponents, this yields

λ2 ≈ λ− + ν̄d log 2 , (5.33)

λ3 ≈ λ− + ν̄d(1 − log 2) , (5.34)

λ4 ≈ λ− + ν̄d

(

log 2 − 1
2

)

. (5.35)
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Figure 5.3: The four largest Lyapunov exponents as functions of the dimensionality.
Their limiting behaviour is indicated with lines. The second, third, and fourth exponent
converge to horizontal lines, as calculated in equations (5.33)–(5.35).

As a consequence of this, for fixed collision frequency, (λ1 − λ−)/ν̄d grows
logarithmically with dimensionality, whereas (λp −λ−)/ν̄d with p > 1 approaches
a limit that is independent of d. This too is illustrated in figure 5.3.

5.6 Discussion

The integrals in equation (5.23) can be performed numerically. Several spectra,
for various dimensionalities, are plotted in figure 5.2. The results for the largest
and smallest exponents are displayed in figures 5.3 – 5.5, along with the limiting
behaviours for large dimensionality, which were discussed already in the previous
section.

The offset of all Lyapunov exponents, λ−, depends on both density and dimen-
sionality. For large d, its magnitude is determined primarily by dimensionality,
unless density is so low as to satisfy

nad <
Od−1

d− 1
. (5.36)

It is interesting to compare the Lyapunov spectrum of a high-dimensional
Lorentz gas to that of a system of moving hard disks, as computed by Dellago et
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Figure 5.4: The discrete derivative of the largest Lyapunov exponent with respect to
log d. The derivative converges to 1

2
, as calculated in equation (5.30).

al. [23]. Figure 3.1 shows such a spectrum for 750 particles in two dimensions at
a density of n = 0.1/a2. One immediately notices that the Lorentz gas spectrum
is much flatter than that of the hard-disk system. The explanation for this is
that for the hard-disk system only a few (four, to be specific) components of the
velocity deviation in tangent space are changed at each collision, whereas in the
Lorentz gas all components are involved, though some will be increased more than
others. A greater similarity may be obtained by replacing the spherical scatterers
in the d-dimensional Lorentz gas by randomly oriented hyper cylinders. Indeed
our calculations [51] indicate that the spectrum obtained for this system resembles
much more that of the hard-disk system, but there remain significant differences
due to the randomness of the cylinder orientations (for hard-disk systems the
scatterers in phase space are hyper cylinders of specific orientations). In addition,
due to the absence of velocities for the scatterers, the d-dimensional Lorentz
gas will never exhibit a branch of Goldstone modes with Lyapunov exponents
approaching zero as the inverse of system size, such as the ones described for hard
disks in chapter 3 and references [22, 28–30, 35, 36, 38, 52].

However, there are also some similarities between the two (positive) spectra:
First of all, both become increasingly flat with increasing index (apart from the
Goldstone branch for the hard disks). Secondly both become steep near the
largest exponent. It is especially remarkable that, for fixed collision frequency,
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Figure 5.5: The smallest positive Lyapunov exponent as a function of the dimensionality.
The values converge to the line 1/(2d), calculated in equation (5.31).

the difference between the largest exponent and the next largest one in the Lorentz
gas increases logarithmically with the number of degrees of freedom, whereas all
the subsequent differences, in the positive half of the spectrum, approach fixed
limiting values. Whether something like this also happens for hard disks is not
known at present, though there have been conjectures of similar behaviour by
Searles et al. [53].

5.7 Conclusions

In this chapter, the full Lyapunov spectrum for the dilute random Lorentz gas in
an arbitrary number of dimensions was calculated. Analytical expressions were
derived for the behaviour of this spectrum. The spectrum becomes flatter with in-
creasing dimensionality or decreasing density. The separation between the largest
and second largest exponent, expressed in units of the collision frequency, increases
logarithmically with dimensionality. The smallest exponent itself, however, grows
more rapidly with the dimensionality.

In the present case we could take advantage of the property that the partial
stretching factor is distributed independently of the subspace being stretched [50].
This is not the case any more for systems of many moving particles, for which the
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dynamics are not invariant, on average, under arbitrary rotations in configuration
space. In chapter 6 an approach is described which applies parts of the method
described in this chapter to many-particle systems.



Chapter 6
Hard disks versus

isotropically distributed

cylinders

6.1 Introduction

In chapters 2 and 5, it was mentioned already that the dynamics of a collision
between two hard particles is equivalent to the dynamics of an elastic collision of
a point particle with a cylindrical scatterer in a high-dimensional space. A system
consisting of N hard particles in d dimensions can similarly be interpreted as a
dN -dimensional space with a point particle bouncing between (hyper-)cylindrical
scatterers. As will be shown in section 6.2, the orientations and positions of the
scatterers are quite specific.

In chapter 5, the Lyapunov spectrum of the high-dimensional Lorentz gas was
calculated. It shows some similarities to the spectrum of many hard particles,
but there are also quite a few differences. Some of these differences are due to the
shape of the scatterers. The scatterers in the Lorentz gas are spherical, whereas
those in many-particle systems are cylindrical. Other differences are due to the
positions of the scatterers, or the relative orientations in the case of hard disks.
In this chapter, the effects of the shape of the scatterers are investigated. Calcu-
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lations on, as well as simulations of systems consisting of isotropically distributed
(hyper) cylinders, produce a spectrum much more similar to that of a hard-sphere
system than to the spectrum of the Lorentz gas [51].

6.2 Scatterer configurations

Consider the high-dimensional system with (hyper-)cylindrical scatterers that is
equivalent to the hard-sphere system. The orientations of the cylinders can be
found easily. If two (hyper) cylinders belong to collisions of pairs of different
particles, the finite directions of the two (hyper) cylinders are orthogonal. Colli-
sions of the point particle in the high-dimensional space with two specific (hyper)
cylinders may be equivalent to two collisions between two pairs of hard spheres
which involve a common particle i. In this case, the spherical components, the
finite directions, of the two (hyper) cylinders are at an angle. Let the two other
particles involved in the two collisions be particles j and l. The d-dimensional
planes with which the inclusion of the cylinder pertaining to a collision between
particles i and j is a sphere consists of the sets

Sij = {r|ri = −rj ∧ rl = 0, if l 6= i, j} . (6.1)

For any d, the highest possible value for an inner product of unit vectors in Sij

and Sil is 1
2 . Therefore the angle between the two sets is π/3.

The coordinates of the centre-of-mass constitute d out of the dN dimensions
of the original system. If the boundary conditions are periodic or the system
is infinite, there is only uniform motion in these directions. This means that
perturbations in these coordinates (uniform translations of the system) remain
constant. Perturbations of the velocity in these directions (Galilei transforma-
tions) lead to a linear growth in the perturbations in the positions. This yields 2d
linearly independent perturbations which do not grow exponentially, and there-
fore 2d zero Lyapunov exponents, associated with the position and momentum of
the centre of mass. There are two more zero Lyapunov exponents, corresponding
to a translation in time and a rescaling of the velocity.

After eliminating the centre-of-mass coordinates by setting the centre-of-mass
position and momentum to zero, one can describe the system as a point particle
with coordinate r in a d(N − 1)-dimensional space with periodic boundary con-
ditions and with N(N − 1)/2 fixed (hyper-)cylindrical scatterers with d spherical
dimensions. As energy is conserved, the particle still moves at velocity v, which
may be related to the inverse temperature β = 1/(kBT ) by

v =

√

(N − 1)d

βm
. (6.2)

If the system has periodic boundary conditions, there are extra parallel cylin-
ders, corresponding to collisions after at least one of the particles has moved
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Figure 6.1: The two-dimensional representation of a system consisting of three particles
in one dimension. A possible trajectory is shown. If the system is infinite, the particles
will soon leave each other’s vicinity and never collide again. The axes of the cylinders
intersect in one point. If the system has finite size L with periodic boundary conditions,
they will encounter each other again. The cylinders belonging to such collisions and a
path are indicated with dotted lines.

through the boundaries of the elementary unit cell. In this case the system con-
sists of a d(N − 1)-dimensional box times

� d with periodic boundary conditions.
Consider, for example, the simplest non-trivial case: three particles in one

dimension. The space has two dimensions and the fixed (hyper) cylinders have
one spherical and one infinite dimension. The 2-dimensional representation is
displayed in figure 6.1.

The cylinders corresponding to the hard-sphere system are oriented in specific
directions. To simplify calculations, it is possible to consider a homogeneous
distribution of scatterers, with a distribution of orientations which is isotropic.
With such a distribution it may become possible to use the techniques developed
in chapter 5 to calculate the Lyapunov spectrum.

6.3 Simulations of the spectrum of isotropically

distributed cylinders

In order to investigate the importance of the shape of the scatterers and the dis-
tribution of orientations, simulations can be done on a high-dimensional system
with homogeneously distributed cylinders with an isotropic distribution of orien-
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tations. Cylinders are considered with two spherical directions. This system can
be compared to hard disks with the same collision frequency as well as to the
Lorentz gas.

6.3.1 Simulation method

The dynamics in phase space were calculated by means of a Monte Carlo method
for the location and orientation of the cylinders. Collision parameters were drawn
from the relevant distributions, to generate a path in phase space. Each step
consists of a short free flight of the point particle, followed by a collision with a
cylindrical scatter. The free-flight times are drawn from an exponential distribu-
tion of times τ ,

p(τ) = ν̄Ne
−ν̄Nτ , (6.3)

where ν̄N is the average collision frequency of the point particle with the scatterers.
The collision normal is drawn from an isotropic distribution in the d(N − 1)-
dimensional space, such that σ̂ · v < 0, and accepted with a probability equal to
the size of the component along the velocity of the point particle, −σ̂ · v̂, which
is proportional to the collision rate in two dimensions. The orientation of the
scatterer is specified by the two vectors in its spherical directions, the collision
normal and one other vector, which is drawn from the isotropic distribution as
well. This leads to an isotropic distribution of the orientations of the scatterers.
For more details on Monte Carlo simulations see reference [54].

At each collision, the dynamics of the point particle are calculated, as well as
the transformations of a numbered set of tangent-space vectors. After every step,
the tangent-space vectors are reorthonormalised. That is to say, the components
of each of the vectors along vectors with higher indices are subtracted and then
the vectors are normalised. The scaling factors are equal to the growth of each
vector between the last two collisions. For long times, the growth of the i-th vector
is dominated by the i-th Lyapunov exponent. The scaling factors are stored and,
for each vector, their logarithms are summed. The i-th sum divided by the total
elapsed time, for long times, converges to the i-th Lyapunov exponent. For more
details on this method for calculating the Lyapunov exponents, see reference [23].

6.3.2 The spectrum

We may compare the spectra of a point particle colliding with homogeneously
and isotropically distributed cylinders to the spectra of systems of hard disks
with the same collision frequency, energy and dimensionality (with d = 2), as
well as to the spectrum of the high-dimensional Lorentz gas. Plots of the spectra
of the isotropically distributed cylinders at various dimensionalities are shown in
figures 6.2 – 6.4 for, respectively, densities n = 0.1, 0.01, and 0.0001, along with
those of the corresponding hard-disk systems under periodic boundary conditions.
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Figure 6.2: The spectra of positive Lyapunov exponents for systems of isotropically dis-
tributed (hyper) cylinders with the same collision frequency, energy, and dimensionality
as a hard-disk system with density 0.1a−2 and various particle numbers N . The inverse
temperature β = 1. The open symbols represent the isotropically distributed cylinders
and the closed symbols represent the corresponding hard-disk system.

The Lorentz gas spectrum, calculated in chapter 5, is much flatter than that
of the hard-disk system. From the figures one can see that the spectrum of a
point particle colliding among isotropically distributed cylinders is much more
similar to the hard-disk spectrum. This is due to the fact that in the Lorentz
gas, all coordinates not associated with zero modes are involved in every collision,
and grow with a factor of the order of the free-flight time between two collisions,
whereas in the case of the hard disks only eight (4d) coordinates are involved in
a collision.

For the largest exponents of hard-disk systems it is known that the corre-
sponding perturbation is carried by only a few particles [6]. The vectors belong-
ing to this exponent are changed by the isotropy of the distribution of scatter-
ers. The largest Lyapunov exponents, therefore, are different, compared to the
many-particle system, for a system consisting of a point particle colliding with
isotropically distributed cylinders.

The tangent-space eigenvectors corresponding to the smaller exponents of
hard-disk systems are carried by many particles, and for these modes the sim-
ilarities to the cylinder system are much greater. The lower Lyapunov exponents
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Figure 6.3: The spectra of positive Lyapunov exponents for systems of isotropically
distributed (hyper) cylinders that are, similarly to figure 6.2, equivalent to a hard-disk
system with density 0.01a−2 and various particle numbers N .

behave similarly to the exponents of the hard-disk system (apart from the Gold-
stone modes) and are proportional to ν̄. There is only a difference of a factor of
about 1.15 between the smallest exponents in the two systems, which does not
depend much on density or particle number. As the cylinders can no longer be
associated with two specific particles, Goldstone modes are absent in the cylinder
system.

6.4 Isotropic-cylinder approximations for the

hard-disk system

The simulation described in the previous section produces a Lyapunov spectrum
which is suggestively similar to the spectrum of hard disks. As the system is
homogeneous and isotropic, part of the techniques developed in chapter 5 can be
applied to calculate the Lyapunov exponents. Rather than working this out we
return to the hard-disk system and apply to this some approximation inspired by
the isotropic cylinder system

For the largest exponent it is known that the corresponding perturbation is
carried by only a few particles [6]. The Lyapunov exponents are strongly affected
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Figure 6.4: The spectra of positive Lyapunov exponents for systems of isotropically
distributed (hyper) cylinders that are equivalent, similarly to figure 6.2, to a hard-
disk system with density 0.0001a−2 and various particle numbers N . In the hard-disk
spectrum the transition between tangent-space eigenvectors carried by a few particles
and those carried by many particles is visible near (i − 1)/(2N − 1) ≈ 0.25.

by this, because collisions of particles other than these few do not contribute to
the growth of the tangent-space vectors. There is a small probability of large
growth, as opposed to a large probability of small growth. In the lower end of
the spectrum, the tangent-space vectors are carried by many particles [55]. In
this regime, it may be possible to approximate the distribution of scatterers as
isotropic.

The properties of the system that give rise to the largest exponents are mod-
ified an isotropic scatterer distribution. The values of the largest exponents will
therefore be different. For the smaller exponents the approximation should be
better. The Goldstone modes, which were discussed in chapter 3, are also re-
moved by the homogeneous distribution of scatterers, as their existence relies on
the fact that in the hard-disk system only nearby particles collide. Sometimes,
the Lyapunov exponents other than the Goldstone modes are referred to as the
“continuum” exponents. This is not entirely accurate, as for finite particle num-
bers there is no continuum and in the limit of infinite particle numbers the step
structure of the Goldstone modes also goes to a continuous line. There is also
some discussion of a discontinuity in the spectrum near the largest exponent [53].
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In this section, a calculation of the smallest continuum exponents is described
which makes use of the stretching factor derived in chapter 4, but which assumes
an isotropic distribution of scatterers.

6.4.1 Projection

In chapter 5, the isotropic distribution of scatterers makes it possible to simplify
the calculation. Because of it, the probability distribution of the stretching factor
is independent of the p-dimensional subspace S which is being stretched.

In the systems described in this chapter, that of isotropically distributed cylin-
ders and that of hard disks, it is important to observe that the choice of the space
onto which everything is projected, affects the distribution of the partial stretch-
ing factors. In equation (4.11) it is shown how diagonal elements of W grow
linearly during free flights. In the calculations of the stretching factor in hard-
disk systems in chapter 4, w⊥⊥ is, essentially, calculated as a weighted sum over
a sequence of free flights. In the case of truly isotropically distributed cylinders,
the (partial) stretching factors are different from those in the equivalent hard-disk
system. However, in that case, w⊥⊥ can be replaced with a similar expression.

Terms in the sum in w⊥⊥ occur in the partial stretching factors of several
collisions. Also, the relative size of their contributions is affected by the relative
orientation of v̂ij belonging to the two collisions. Suppose one such term contains
a long free-flight time. In the phase-space direction belonging to this particle, the
stretching is large, and this affects the orientation of the growing manifold. At
future collisions of the particle, w⊥⊥ will again contain large terms due to this free-
flight time. This introduces a correlation between the orientation of the manifold
and the partial stretching factor. In the projection onto δv, the distribution of
partial stretching factors depends on the orientation of the stretched space S,
even in the case of fully isotropically distributed cylinders.

If an approximation is to be made in the hard-disk system which does not
exhibit this problem, the standard choice of projection on δv, which was used in
chapter 4, is inadequate. Instead, as is done in this section, the dynamics must
be projected onto δr. In this representation, the correlations through the sums of
collision times are removed. However, the isotropic distribution of orientations is
still an approximation, as there is correlation between free-flight times and other
collision parameters from different collisions through the particle velocity.

6.4.2 The partial stretching factors for hard spheres at low

densities

The stretching of a p-dimensional subspace of the space of δr, due to a collision
between particles i and j, depends on the subspace itself and on W at the col-
lision. There are 2d coordinates involved in the collision projected on δr, d for
each particle. The tangent-space dynamics are described in chapter 2. In the
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relative coordinates, the collision transforms the tangent-space vectors as in an
elastic collision with a d-dimensional, fixed, spherical scatterer. Q works on d− 1
directions of the relative coordinates orthogonal to v̂ij . The stretching in those
directions was calculated in chapter 5 from equation (5.11).

Let ρ̂ represent the vector, in d dimensions, which is orthogonal to v̂ij and in
the plane spanned by σ̂ and v̂ij . In the direction of δrij parallel to ρ̂, the partial
stretching factor of the projection on δr after a collision and subsequent free
flights is, in leading order in the density, 2vτ+/(a cos θ), where τ+ is the same as
in chapter 4, that is, τ+ = (τi + τj)/2. In d−2 directions orthogonal to ρ̂ and v̂ij ,
the partial stretching factor is 2vτ+ cos θ/a. There are d+ 1 coordinates involved
in the collision on which Q does not work, the centre-of-mass coordinates and the
relative coordinates parallel to v̂ij . In these directions, the linear stretching due
to the free flights must be calculated and incorporated into the partial stretching
factor. Meanwhile, for all other particles, δr grows linearly as well. This can be
accounted for later, at their next collision.

The distribution of this stretching is complicated if the distribution of the
elements of W is hard to obtain. In a simple calculation, the expressions for
W ′ and W∗ in the mean-field approximation of section 4.3.1 can be used [see
equations (4.21) and (4.22)]. In this case, W is approximated by W̄ = Iw̄. With
this simple form of W ′ and W∗, the partial stretching factors in the remaining
d+ 1 directions can be calculated. For the d− 1 directions of the centre-of-mass
coordinates orthogonal to v̂ij , the eigenvalues of W ′ are w̄+ν̄τ+, yielding a partial
stretching factor of (w̄+ν̄τ+)/w̄. Similarly, for the remaining two directions, those
parallel to v̂ij , one finds (w̄ + ν̄τi)/w̄ and (w̄ + ν̄τj)/w̄.

In the directions of particles not involved in the collision, nothing is changed.
In the coordinates parallel to v̂ij ,

v̂′
ij · δr′i =

(

1 +
ν̄τi
w̄

)

v̂ij · δri . (6.4)

In the relative coordinates, Q acts on vectors orthogonal to v̂′
ij ,

(1− v̂′
ij v̂

′
ij) · δr′ij =

2vτ+
a

[

cos θ(1 − v̂′
ij v̂ij − ρ̂′ρ̂) +

1

cos θ
ρ̂′ρ̂

]

· δrij

+
ν̄(τi − τj)

2w̄
(1 − v̂′

ij v̂ij) · δRij . (6.5)

In the centre-of-mass coordinates orthogonal to v̂′
ij ,

(1− v̂′
ij v̂

′
ij) · δR′

ij =
(

1 +
ν̄τ+
w̄

)

(1 − v̂′
ij v̂ij) · δRij

+
ν̄(τi − τj)

2w̄
(1− v̂′

ij v̂ij) · δrij . (6.6)

The eigenvalues of the transformation, the growth factors, may be numbered gl,
with l between 1 and 2d. They can be found from equations (6.4) – (6.6). More
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simply put, the following growth factors occur:

gl =































































2vτ+
a cos θ

if l = 1 ,

2vτ+ cos θ

a
if 1 < l ≤ d− 1 ,

1 +
ν̄τi
w̄

if l = d ,

1 +
ν̄τ+
w̄

if d < l ≤ 2d− 1 ,

1 +
ν̄τj
w̄

if l = 2d .

(6.7)

From these growth factors, the partial stretching factor can be calculated.

6.4.3 Lower bound of the Kolmogorov-Sinai entropy

In principle, the choice of projection does not affect the Kolmogorov-Sinai entropy.
Also, since no partial stretching factors are considered in the calculation, only
the stretching factor, there is no need for any isotropic approximation. From
equations (6.7) and (4.30) or (4.40) the stretching factor can be calculated. With
equation (4.3) the Kolmogorov-Sinai entropy becomes,

hKS =
Nν̄

2

〈

log

[

2d
∏

l=1

gl

]〉

. (6.8)

The approximation of W−1 by 1/W̄ affects the Kolmogorov-Sinai entropy. After
numerical integration, using the estimate for w̄ in equation (4.40), this yields for
the constant B the approximate values

B(1)
αr ≈

{

0.98 if d = 2 ,

0.13 if d = 3 .
(6.9)

The estimation is quite rough, compared to the results of equation (4.51). Note
that here, unlike in the calculation in chapter 4, a wider spread of the elements
of W , or a lower value of w̄, leads to a larger value for B. The result for w̄ in
equation (4.30) does not include the estimate of the terms from collisions before
the previous collision in the calculation of w̄ through α. As the results of equa-
tion (4.30) are an upper bound for w̄, a lower bound for B can be found from
them, or

B >

{

0.96 if d = 2 ,

0.09 if d = 3 .
(6.10)
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6.4.4 The smallest exponents

Despite the crudeness of the approximations made in this section to calculate the
(partial) stretching factors, it is possible to use the results to estimate the smallest
continuum Lyapunov exponents.

Any [d(N − 1) − 2]-dimensional subspace Sd(N−1)−2 of the [d(N − 1) − 1]-
dimensional subspace Sd(N−1)−1 of [δri] orthogonal to the zero modes can be
characterised by a single vector, ĝ. This is the vector orthogonal to Sd(N−1)−2

and the zero modes. The assumption made in this section is that this vector,
which is the eigenvector belonging to the smallest positive (continuum) exponent
has significant components along the directions δri and δvi of many particles, and
is more or less isotropically distributed in phase space, which permits the isotropic
approximation mentioned before. Also, these components do not depend on the
velocities of the particles.

The smallest continuum exponent can be calculated from equation (5.13), the
partial stretching factor of Sd(N−1)−2 at a collision, and the stretching factor.
Following the derivation in section 5.4 for the hard-disk system, one obtains

λd(N−1)−2 =
Nν̄

2

〈

log Λ(p) − log Λ
(p)
d(N−1)−2

〉

, (6.11)

where p is the index of the collision, Λ(p) is the stretching factor due to collision

p, and Λ
(p)
d(N−1)−2 is the partial stretching factor of Sd(N−1)−2 due to collision p.

The difference of the two logarithms in equation (6.11) can be expressed in
terms of the components of ĝ along the growing directions, denoted as sinφl, with
l the index of the growth factor. If sinφl is small for all l, 〈sin2 φl〉 = 1/(dN), one
finds

λd(N−1)−2 ≈ Nν̄

2

〈

− log

(

2d
∏

l=1

√

cos2 φl +
1

g2
l

sin2 φl

)〉

. (6.12)

If ĝ has components along many particles, then sinφl is small, and the logarithm
can be expanded around unity argument, to yield

λd(N−1)−2 ≈ Nν̄

4

〈

2d
∑

l=1

(

1 − 1

g2
l

)

sin2 φl

〉

. (6.13)

With the assumptions made about the distribution of φl, one then finds

λd(N−1)−2 ≈ ν̄

4d

2d
∑

l=1

(

1 −
〈

1

g2
l

〉)

. (6.14)

The d − 1 directions in which the growth factor is of order 1/n contribute an
amount ν̄/(4d) to the smallest exponents. The growth factors due to the free
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flights, of order 2, contribute smaller amounts. If the growth factors had been
calculated from the projection on δv, the isotropic approximation would have
been worse, and only the growth in the d− 1 directions on which Q works would
have been found. The other terms in the smallest exponents would have been
absent.

Combining equation (6.14) with equations (4.40) and (6.7), after numerical
integration over the growth factors to calculate the averages, yields estimates for
the leading order of the smallest continuum exponent, at low densities,

λd(N−1)−2 ≈
{

0.26 ν̄ if d = 2 ,

0.32 ν̄ if d = 3 .
(6.15)

These expressions are similar to the lowest continuum exponent found in simula-
tions of hard disks and hard spheres, which are also proportional to ν̂. For large
particle numbers and low densities, the smallest continuum exponents are equal
to [37]

λd(N−1)−2 =

{

0.31 ν̄ if d = 2 ,

0.39 ν̄ if d = 3 .
(6.16)

The prefactors found in the estimation based on the mean-field and isotropic
approximations differ from the simulation results by less than 20 %.

6.5 Conclusions

In this chapter, in section 6.3, Monte Carlo simulations of the spectrum of the
isotropically distributed cylinders were discussed. The lower three quarters of
the positive Lyapunov exponents were found be similar to the exponents of hard
disks as a function of the (effective) density. The dependence on the number of
dimensions (particles) is also the same for the lower end of the spectrum. The
larger exponents behave differently, as was to be expected.

Further, in section 6.4, an estimate of the smallest continuum exponent was
discussed. In this calculation, the collective property of the eigenvector belonging
to the smallest exponent was used. This is less severe than assuming a completely
isotropic distribution of scatterer orientations, but the results are the same to
leading order. Based on the calculations presented in chapter 4, an approximation
for the partial stretching factor was made. The results of this calculation resemble
the simulation results for hard disks. The smallest continuum exponents depend
on the collision frequency ν̄ in the correct way. The prefactor deviates from the
simulation results by about 20%. The ∼ ν̄ behaviour of the smallest continuum
exponents is entirely due to the fact that at a collision the tangent-space vectors
only grow in a few directions.
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Both calculations discussed in this chapter indicate that the lower end of the
continuum spectrum is predominantly determined by the shape of the scatterers,
and not so much by the scatterer orientations. With better approximations of
the partial stretching factor, it should be possible to use the method developed
in chapter 5 with an isotropic distribution of scatterer orientations to calculate
the lower three quarters of the continuum Lyapunov spectrum of hard disks and
spheres.





Appendix A
Polynomial expansion of the

generalised Enskog equation

A.1 Expansion in Hermite polynomials of the

tangent-space collision operators

In order to solve equation (3.29), one must write the operators in equations (3.18)
and (3.19) as matrices with elements defined as inner products of these operators
between the basis functions described in equation (3.41). From now on we take
d = 2, but the same calculations can easily be done for three dimensions. We
only show results for basis functions of up to linear order in v. In equation (3.41)
p and q can be equal to 0 or 1. In fact, one has to include higher powers to find
good approximations for the solutions to the original equations. In this appendix
basis functions with up to sixth power in v are used.

If the first component is the component parallel to k, the basis is ordered as
(1, 0), (0, 1), (

√

βm/2 v‖, 0), (0,
√

βm/2 v‖), (
√

βm/2 v⊥, 0), (0,
√

βm/2 v⊥). All
coefficients are given to leading order in n. In this notation the zero modes are

∆r
(0)
1 =











(1, 0, 0, 0, 0, 0) ,

(0, 1, 0, 0, 0, 0) ,

(0, 0, 1
2

√
2, 0, 0, 1

2

√
2) .

(A.1)
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Here, the subscript 1 indicates that basis functions up to first order in v have
been included. From equations (3.26) and (3.29) it follows that the operator BS,
specified in equation (3.18), is only needed up to first order in k. One finds for
the matrix elements of BS in the expansion of equation (3.21)

B
(0)
S,1 =

√

2

βm

3
√

2π

8
na

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 -1 0 0 1
0 0 0 -3 1 0
0 0 0 1 -3 0
0 0 1 0 0 -1

















, (A.2)

B
(1)
S,1 =

√

2

mβ

√
2πi

16
na2

















0 0 3 0 0 1
0 0 0 1 1 0
3 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

















. (A.3)

The first three contributions to BQ as expanded in equations (3.19) and (3.22)
have similar matrix representations of the form

B
(0)
Q,1 =

2

βm
2π n

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 -1 1 0
0 0 0 1 -1 0
0 0 0 0 0 0

















, (A.4)

B
(1)
Q,1 =

2

βm

√
π i

8
na

















0 0 1 0 0 -1
0 0 0 -5 7 0
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0 0 0 -4 3 0
0 0 0 0 0 1
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The operators ik̂ · v and −(k̂ · v)2 can also be written in this way. One finds

ik̂ · v = −
√

1

βm

















0 0 i 0 0 0
0 0 0 i 0 0
i 0 0 0 0 0
0 i 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















, (A.7)

−(k̂ · v)2 = − 1
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0 1 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















. (A.8)

A.2 Solutions to the generalised Boltzmann

equation

With these matrices and equation (3.26) the vectors for ∆r(1) may be expressed
in terms of ∆r(0) up to first order in the polynomial expansion in v. With the
orthogonality relation between ∆r(1) and ∆r(0), mentioned in section 3.5.1, this
yields

∆r
(1)
1 = − 2i

9na
√
π

















0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

-1 0 0 0 0 0

















· ∆r
(0)
1 . (A.9)

The matrices expressing the collision operators in the basis of Hermite polynomials
can be used to find the 3×3 matrices in equations (3.29) and (3.31). The equation
to leading order in n then becomes

det
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= 0 .
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n transverse λ
(1)
n

√

βm
2 longitudinal λ

(1)
n

√

βm
2

1 ±0.62361 ±0.639552± 0.463231 i
2 ±0.62361 ±0.422807± 0.499026 i
3 ±0.626194 ±0.424806± 0.499105 i
4 ±0.626194 ±0.428599± 0.498952 i
5 ±0.626254 ±0.428645± 0.498954 i
6 ±0.626254 ±0.429104± 0.498953 i

Table A.1: The Lyapunov exponents and the propagation velocities for the longitudinal
mode calculated using products of Hermite polynomials in v up to different orders.

Here, the indices of the matrix on the left-hand side are ordered according to
(∆r

(0)
⊥ , ∆r

(0)
‖ , ∆r

(0)
v ). The matrix can be factorised into two parts. One part

describes the transverse mode and produces an equation for (λ(1))2, with the
solution

λ
(1)
1

√

βm

2
= ±1

6

√
14 ≈ ±0.62361 . (A.11)

The remaining part produces a quadratic equation in (λ(1))2, yielding the longi-
tudinal mode. The solutions for λ(1) are

λ
(1)
1

√

βm

2
= ±1

6

√

(

7 ± i
√

455
)

≈ ±0.639552± 0.493231 i . (A.12)

The same calculation can be done with larger subsets of the basis. The results
are shown in Table A.1.

Using functions up to an odd power in v is different from using functions up
to an even power, because the odd-powered functions contribute more to different
matrix elements than the even-powered functions. To see whether the solutions
have converged, one must therefore raise the power by steps of 2. The error in the
results using up to sixth powers in v can be estimated by comparing the results
for powers in v up to four. The error in the solutions when using up to the sixth
power in v in the basis functions appears not to be much larger than a promille.
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Samenvatting

Statistische mechanica is de tak van de theoretische natuurkunde die macrosco-
pische eigenschappen beschrijft van systemen die uit veel deeltjes bestaan aan de
hand van microscopische eigenschappen. Aan het eind van de negentiende eeuw
werd door onder anderen Boltzmann, Maxwell en Gibbs de basis gelegd voor
de statistische mechanica van systemen in evenwicht. Een belangrijk begrip uit
de statistische mechanica is de Boltzmann-factor waarmee een kans kan worden
toegekend aan elke evenwichtstoestand. Met het gereedschap van de statistische
mechanica van evenwichtssystemen kunnen praktische berekeningen worden uit-
gevoerd voor een heel scala van systemen. Voor systemen uit evenwicht zijn veel
minder van dit soort methoden beschikbaar.

Volgens de tweede hoofdwet van de thermodynamica neemt de entropie, een
maat voor de wanorde van een systeem, toe. Veel-deeltjessystemen produceren
entropie terwijl ze naar een evenwichtstoestand toe bewegen en gaan niet uit
zichzelf terug naar een situatie uit evenwicht. In beginsel is elk klassiek fysisch
systeem echter omkeerbaar. De omkeerbare microscopische dynamica heeft on-
omkeer macroscopisch gedrag tot gevolg, voor bijna alle beginvoorwaarden. Vaak
is het echter niet haalbaar een fysisch systeem direct als microscopisch dynamisch
systeem te behandelen omdat het grote aantal vrijheidsgraden berekeningen veel
te gecompliceerd maakt. In de statistische mechanica wordt een verband gelegd
tussen de dynamische, microscopische beschrijving van een systeem en de statis-
tische, macroscopische beschrijving.

Ludwig Boltzmann leidde aan het eind van de negentiende eeuw de naar hem
genoemde vergelijking af. De Boltzmann-vergelijking beschrijft de tijdsevolutie
van de kansverdeling van deeltjes in plaats en snelheid. Ondanks de volledig
omkeerbare, microscopische dynamica volgt uit de Boltzmann-vergelijking on-
omkeerbaar macroscopisch gedrag. In de afleiding van zijn vergelijking maakte
Boltzmann gebruik van een aanname over de wanorde van systemen die uit veel
deeltjes bestaan, de Stoßzahlansatz. Deze komt neer op een aanname over de
begintoestand en het gedrag van het microscopische, dynamische systeem.

Dynamische eigenschappen, zoals ergodiciteit en chaos, zijn van invloed op
het onomkeerbare macroscopische gedrag. De verbanden tussen dynamische sys-
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temen en de statistische mechanica van niet-evenwichtssystemen zijn een bron van
verhitte discussie, omdat ons begrip ervan nog zeer onvolledig is.

Chaos

Bij een meting is altijd sprake van een beperkte resolutie. Dit betekent dat van
een fysisch systeem nooit de precieze begintoestand bekend is. Het systeem start
in een beginpunt en beweegt vervolgens door de faseruimte, de ruimte van alle
mogelijke toestanden. Voor veel systemen heeft onzekerheid in de beginvoor-
waarden tot gevolg dat alleen voor beperkte tijd zinvolle voorspellingen gedaan
kunnen worden over hun evolutie. Een kleine onzekerheid in het beginpunt leidt
na verloop van tijd tot een grote onzekerheid in het pad van het systeem door de
faseruimte. Het traject van een knikker die met een aantal andere knikkers botst
is moeilijk nauwkeurig te voorspellen, omdat een klein verschil in de richting van
de beginsnelheid grote gevolgen heeft voor het verdere verloop. Een systeem met
zulke gevoeligheid voor beginvoorwaarden noemen we chaotisch.

Beschouw bijvoorbeeld een eenvoudig dynamisch systeem met twee vrijheids-
graden, het tweedimensionale Lorentz-gas. Dit bestaat uit een verzameling vaste,
bolvormige verstrooiers, waartussen een puntdeeltje beweegt dat elastisch met
de verstrooiers botst. De faseruimte van dit systeem heeft vier dimensies, twee
voor de positie en twee voor de snelheid. Twee verschillende paden met iets ver-
schillende beginvoorwaarden zijn weergegeven in figuur 1.2. De paden divergeren
exponentieel.

Het chaotische gedrag wordt gekwantificeerd door de Lyapunov-exponenten.
Deze geven de mogelijke snelheden waarmee een infinitesimaal verschil in begin-
voorwaarden exponentieel kan groeien of krimpen. De ruimte van mogelijke infini-
tesimale verstoringen van punten in de faseruimte wordt de raakruimte genoemd.
Een systeem heeft evenveel Lyapunov-exponenten als de bijbehorende faseruimte
dimensies heeft. Deze Lyapunov-exponenten kunnen allemaal verschillend zijn,
maar vaak zijn een klein aantal exponenten aan elkaar gelijk. Ze worden vaak ge-
nummerd op volgorde van grootte. De verzameling van Lyapunov-exponenten van
een systeem heet het Lyapunov-spectrum. Als een systeem minstens een positieve
Lyapunov-exponent heeft, wordt het chaotisch genoemd. Voor meer informatie
over chaos en dynamische systemen, zie referentie [5].

Als een chaotisch systeem waarvan de toestand met een vaste resolutie kan
worden bepaald langere tijd wordt geobserveerd, dan wordt steeds meer bekend
over de beginvoorwaarden. Twee punten in de faseruimte die eerst niet van elkaar
konden worden onderscheiden, zijn na verloop van tijd verder van elkaar verwij-
derd, zodat meer informatie kan worden verkregen over de begintoestand door
een systeem langer te observeren. De maximale snelheid waarmee informatie over
het systeem toeneemt, wordt de Kolmogorov-Sinai-entropie genoemd. Voor ge-
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sloten systemen is deze gelijk aan de som van de positieve Lyapunov-exponenten.
Voor open systemen kan de Kolmogorov-Sinai-entropie daarboven vaak gerela-
teerd worden aan transportcoëfficiënten [7–10].

Veel systemen bezitten een aantal Lyapunov-exponenten die nul zijn. De-
ze horen bij eenvoudige verstoringen die niet exponentieel groeien, zoals uni-
forme translaties, of Galilei-transformaties, die alleen lineair toenemen. Zulke
verstoringen worden “zero modes” genoemd en kunnen altijd geassocieerd wor-
den met symmetrieën zoals bijvoorbeeld translatiesymmetrie, Galilei-invariantie,
tijdstranslatie-invariantie of energieherschaling.

Veel deeltjes en veel vrijheidsgraden

Het eerder genoemde Lorentz-gas wordt vaak gebruikt voor het bestuderen van
systemen uit evenwicht. Het Lorentz-gas is een dynamisch systeem dat door
het lage aantal vrijheidsgraden en de eenvoudige vorm van de verstrooiers toch
hanteerbaar is. Ook met allerlei toevoegingen, zoals krachtvelden of extra poten-
tialen, is het veelal mogelijk om berekeningen uit te voeren [11, 15–17, 21]. De
verstrooiers kunnen in een regelmatig rooster worden geplaatst, of op willekeurige
posities. Een essentieel verschil tussen veel-deeltjessystemen en het Lorentz-gas
is het aantal tijdsafhankelijke vrijheidsgraden.

Een veel-deeltjessysteem heeft een groot aantal Lyapunov-exponenten, in te-
genstelling tot het Lorentz-gas, dat in twee dimensies slechts een en in drie dimen-
sies twee positieve exponenten heeft. Het totaal aantal Lyapunov-exponenten van
een veel-deeltjessysteem is evenredig met het aantal deeltjes. Op het Lyapunov-
spectrum van veel-deeltjessystemen zijn effecten van invloed die nooit kunnen
voorkomen in de spectra van laagdimensionale systemen. Om het chaotische ge-
drag van systemen met veel vrijheidsgraden uit evenwicht te begrijpen is het
van essentieel belang een volledig begrip te verkrijgen van de effecten die van
invloed zijn op veel-deeltjessystemen in evenwicht. In dit proefschrift worden
berekeningen beschreven aan drie verschillende systemen in evenwicht met veel
vrijheidsgraden.

Alle drie de systemen hebben een harde potentiaal. Dat wil zeggen, ze bestaan
uit harde deeltjes die elastisch met elkaar of met harde sferische of cilindrische
verstrooiers botsen. De dynamica van zulke botsingen is veel eenvoudiger dan de
dynamica van zachte potentialen. Bovendien sluiten deze potentialen simultane
interacties tussen drie deeltjes uit. Dit maakt berekeningen veel eenvoudiger.
Voor lage dichtheden komt het gedrag van systemen met harde potentialen redelijk
overeen met dat van systemen met zachte potentialen.

In hoofdstuk 2 wordt, als voorbereiding op de rest van het proefschrift, de dy-
namica van de harde interactie uitgewerkt. Ook wordt de Boltzmann-vergelijking
afgeleid voor systemen van harde bollen.
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Bewegende harde bollen

In hoofdstukken 3 en 4 worden systemen behandeld van veel vrije, elastisch bot-
sende, harde bollen in twee en drie dimensies. Eerder werden berekeningen gedaan
aan de grootste Lyapunov-exponenten van zulke systemen [6, 25]. Uit die bereke-
ningen, en uit simulaties [55], blijkt dat de verstoringen die horen bij de grootste
Lyapunov-exponenten gedragen worden door een klein aantal deeltjes. In de rest
van het spectrum worden de verstoringen juist door meer deeltjes gedragen.

Uit simulaties van zulke systemen met verschillende randvoorwaarden is ge-
bleken dat het Lyapunov-spectrum in het gebied van de kleine exponenten inte-
ressant gedrag vertoont [22, 23, 36]. Er is de laatste jaren daarom veel aandacht
geweest voor deze exponenten. De kleinste exponenten in absolute waarde verto-
nen een stapstructuur als gevolg van ontaarding. Bij vaste dichtheid, temperatuur
en vorm zijn de kleinste positieve en negatieve exponenten omgekeerd evenredig
met de grootte van het systeem, voor voldoende grote systemen. De bijbehoren-
de verstoringen hebben een zeer suggestieve golfvormige afhankelijkheid van de
plaats. Ze komen, per golfvector, voor in groepen van zes in twee dimensies en
acht in drie dimensies. Per golfvector kunnen ze weer worden onderscheiden in
twee respectievelijk vier transversale modes en vier longitudinale modes.

In hoofdstuk 3 [35] wordt beschreven hoe deze exponenten gezien kunnen wor-
den als Goldstone-modes. Goldstone-modes doen zich voor wanneer een continue
symmetrie, zoals bijvoorbeeld een van de symmetrieën die geassocieerd worden
met de zero modes, spontaan wordt gebroken. Vanuit dit uitgangspunt worden
deze exponenten in hoofdstuk 3 benaderd via kinetische theorie. Daarvoor wordt
een gegeneraliseerde Boltzmann-vergelijking afgeleid, die niet alleen de plaats en
snelheid van een deeltje bevat, maar ook de verstoring hiervan op een baan met
infinitesimaal verschillende beginvoorwaarden. De oplossingen hiervan geven de
kleinste exponenten en de bijbehorende verstoringen.

Het blijkt echter dat de Stoßzahlansatz in dit geval niet volstaat, zelfs niet
in de limiet dat de dichtheid naar nul gaat. Voor de Lyapunov-exponent van de
transversale mode en de voortplantingssnelheid van de longitudinale mode zijn
de resultaten van de Boltzmann-vergelijking goed in de limiet van lage dichtheid,
maar voor de Lyapunov-exponent van de longitudinale mode wijkt de uitkomst
25% af van de resultaten uit simulaties. Dit is erg verrassend, aangezien voor
de berekening van veel grootheden, zoals bijvoorbeeld transportcoëfficiënten, de
Boltzmann-vergelijking volstaat in leidende orde. De reden waarom in dit ge-
val de door de Stoßzahlansatz verwaarloosde effecten van ringbotsingen kunnen
bijdragen wordt beschreven in sectie 3.7. Het zou zeker interessant zijn om de
berekeningen van de exponenten die bij de Goldstone-modes horen uit te breiden
door deze effecten mee te nemen, maar de vraag is of dit haalbaar is.

In hoofdstuk 4 wordt de Kolmogorov-Sinai-entropie van het zelfde systeem
berekend. In eerdere berekeningen [31] was de leidende, logaritmische, term in
de dichtheidsontwikkeling al berekend. De constante termen die daar nog bij
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komen, en waar geen verdere benaderingen voor nodig leken, kwamen echter niet
overeen met de resultaten uit simulaties. Zowel in de eerdere berekening als in
de berekening in hoofdstuk 4 wordt gebruik gemaakt van de “stretching factor.”
Deze geeft de totale exponentiële oprekking van de raakruimte voor lange tijden.

In de berekening wordt duidelijk waar de problemen met de constante termen
vandaan komen. In de lage-dichtheidsbenadering uit referentie [31] wordt een
gedeelte van de voorgeschiedenis van de deeltjes verwaarloosd. In hoofdstuk 4
wordt uitgelegd hoe dit probleem technisch opgelost kan worden. De resultaten
van de berekening komen dan ook beter overeen met de simulaties.

Hoogdimensionaal Lorentz-gas

Het kleine aantal vrijheidsgraden is niet de enige eigenschap die het Lorentz-
gas zo handelbaar maakt. Ook de sferische vorm van de verstrooiers maakt veel
berekeningen eenvoudiger. Zo voorkomt die bijvoorbeeld de problemen met de be-
nadering voor lage dichtheid, die voor harde-bollengassen moeilijkheden oplevert
met de constante termen in de Kolmogorov-Sinai-entropie. Gezien de zeer tech-
nische berekeningen van hoofdstuk 4 is dit een zeer plezierige eigenschap van het
Lorentz-gas. Ondanks de verschillen met veel-deeltjessystemen, is het interessant
om het Lorentz-gas in een situatie te beschouwen waarin het veel vrijheidsgra-
den heeft die elkaar bëınvloeden. De faseruimte van veel-deeltjessystemen kan
beschreven worden als een hoogdimensionale ruimte met daarin cilindervormige
verstrooiers met specifieke posities en oriëntaties. Vanuit het oogpunt van dyna-
mische systemen lijken het hoogdimensionale Lorentz-gas en systemen van veel
deeltjes veel op elkaar.

In hoofdstuk 5 [46] wordt het volledige Lyapunov-spectrum van een random,
homogeen Lorentz-gas bij lage dichtheid in een willekeurig aantal dimensies be-
rekend. In deze berekening wordt hier een “partial stretching factor” ingevoerd.
Deze geeft de oprekking aan van een p-dimensionaal oppervlakje in de raakruimte.
Voor lange tijden wordt deze oprekking gedomineerd door de p grootste Lyapunov-
exponenten. Dankzij de homogeniteit en de isotropie van de verdeling van de ver-
strooiers is het mogelijk om bij lage dichtheid uit de “partial stretching factors”
de Lyapunov-exponenten te berekenen.

De resultaten van deze berekening kunnen worden vergeleken met de Lyapu-
nov-spectra van veel-deeltjessystemen. Beide spectra zijn steiler bij de grootste
exponent en vlakken af in de buurt van de kleinste exponent. Het spectrum van
het Lorentz-gas wordt echter vlakker naarmate het aantal dimensies toeneemt,
terwijl de spectra van veel-deeltjessystemen dezelfde vorm houden. Dit is het
gevolg van de vorm van de verstrooiers. Het is ook interessant om op te merken
dat de grootste exponent in gedrag kwalitatief verschilt van de op een na grootste.
Verder kunnen de Goldstone-modes die in hoofdstuk 3 worden beschreven, niet
voorkomen in het Lorentz-gas, door de homogeniteit van de faseruimte.
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Cilindrische verstrooiers

Het is zinvol om een systeem te onderzoeken dat ergens tussen de twee syste-
men inzit, zodat de technieken die voor het Lorentz-gas geschikt zijn gedeelte-
lijk bruikbaar blijven, terwijl de dynamica toch meer weg heeft van die van een
harde-bollensysteem. In hoofdstuk 6 worden daarom systemen onderzocht met
cilindrische verstrooiers die homogeen en isotroop zijn verdeeld. Deze zijn wel
onderhevig aan de problemen die worden beschreven in hoofdstuk 4.

Uit de gedane simulaties van zulke systemen blijkt dat de Lyapunov-spectra
van homogeen en isotroop verdeelde (hyper)cilinders veel meer lijken op die van
harde bollen dan de spectra van het hoogdimensionale Lorentz-gas. Omdat de
verstoringen die bij de grootste exponenten horen in harde-bollensystemen slechts
door een beperkt aantal deeltjes worden gedragen, is er bij de grootste exponenten
wel een duidelijk kwalitatief verschil tussen de twee systemen. Voor de kleinere
exponenten, met uitzondering van die van de Goldstone-modes, die bij de cilinders
niet voorkomen, is het verschil louter kwantitatief, niet meer dan 15%.

Met deze informatie wordt het erg interessant om een hybride berekening
uit te voeren die gebruik maakt van “partial stretching factors.” Deze worden
afgeleid uit de “stretching factor” berekend in hoofdstuk 4. Daarbij wordt voor
het bereken van de Lyapunov-exponenten op grond van de “partial stretching
factors” een isotrope benadering gebruikt. Een opzet van deze berekening wordt
in hoofdstuk 6 gegeven. Daar worden de kleinste Lyapunov-exponenten van een
dergelijk systeem geschat en vergeleken met de corresponderende exponenten van
het equivalente harde-bollensysteem. Beide hangen op dezelfde manier af van de
botsingsfrequentie, met een voorfactor die niet meer dan 20% verschilt.

Conclusies

De berekeningen die in dit proefschrift worden beschreven versterken alle het
begrip van chaos in systemen met meerdere vrijheidsgraden. Vooral in hoofdstuk 3
en 5 worden nieuwe technieken ontwikkeld om de Lyapunov-exponenten van zulke
systemen analytisch uit te rekenen. In hoofdstuk 4 worden vooral technische
problemen met eerdere berekeningen opgelost. De simulaties en berekeningen in
hoofdstuk 6 verschaffen inzicht in de vorm van het onderste stuk van de “continu-
um”-spectra van veel-deeltjessystemen. Het zou interessant zijn om de benadering
uit hoofdstuk 6 toe te passen op het hele onderste gedeelte van het Lyapunov-
spectrum van harde bollen, in plaats van alleen op de kleinste exponenten.

Een ander interessant aspect van het spectrum van harde bollen is een overgang
tussen exponenten waarvan de verstoringen door weinig deeltjes worden gedragen
en die waarvan de verstoring door veel deeltjes wordt gedragen. Hoe deze overgang
precies tot stand komt en hoe de exponenten boven de overgang zich gedragen is,
behalve voor de grootste, nog niet duidelijk.
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