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Lyapunov spectrum of the many-dimensional dilute random Lorentz gas
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For a better understanding of the chaotic behavior of systems of many moving particles, it is useful to look
at other systems with many degrees of freedom. An interesting example is the high-dimensional Lorentz gas,
which, just like a system of moving hard spheres, may be interpreted as a dynamical system consisting of a
point particle in a high-dimensional phase space, moving among fixed scatterers. In this paper, we calculate the
full spectrum of Lyapunov exponents for the dilute random Lorentz gas in an arbitrary number of dimensions.
We find that the spectrum becomes flatter with increasing dimensionality. Furthermore, for fixed collision
frequency the separation between the largest Lyapunov exponent and the second largest one increases loga-
rithmically with dimensionality, whereas the separations between Lyapunov exponents of given indices not
involving the largest one go to fixed limits.
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I. INTRODUCTION spectrum of a high-dimensional dilute Lorentz gas. It is in-

teresting to see the similarities as well as the differences

Many studies have been done on the chaotic properties ¢fenween the Lorentz gas and the hard-sphere spectra. In ad-
the Lorentz ga$1-3. Itis a simple model which consists of jtion, the methods used here may well be amenable to re-

a single particle moving freely between elastic spherical sCalfinements, so as to make them applicable to systems of many
terers. The scatterers can either be placed at random or i”rﬁoving particles.

lattice configuration. The Lorentz gas provides a physical |, this paper, we study the behavior of a dilute, random,
system yet is still simple enough to allow for exact Ca|C“|a'nonoverIapping Lorentz gas in an arbitrary number of di-
tions of many properties. This simplicity is partially QUe 0 mensionsd. For larged this system has many degrees of
the fact that the Lorentz gas contains only one moving pargeedom, while, largely due to the spherical symmetry of the
ticle, and therefore does not have many dynamical degrees Qfayterers; it is still possible to do exact calculations. Here we
freedom. Systems with more degrees of freedom, such g8icylate the full Lyapunov spectrum in the absence of any
moving hard spheres or disks, have also been studied frestarnal fields.

quently. Extensive simulation work has been done on their ag 5 preparation, we introduce Lyapunov exponents and
Lyapunov spectrurfd—6], and for low densities analytic cal- e | orentz gas in Sec. Il and we discuss the low-density
culations have been done for the largest Lyapunov exponegiyproximation. In Sec. Iil, we derive an integral expression
[7-10, the Kolmogorov-Sinai entropy7,20}, and the small- - for the spectrum of Lyapunov exponents. Then, in Sec. IV,
est positive Lyapunov exponerii1,12. we approximate this expression for high-dimensional sys-
From the viewpoint of dynamical systems theory, the Lor-tems and investigate its properties. In Sec. V, we discuss the

entz gas and hard-sphere systems are very similar, as notggk its and make comparisons to the hard-disk Lyapunov
already many years ago by Sifai3]. Both systems may be spectrum.

viewed as “billiards,” i.e., systems consisting of fixed ob-
stacles in a mostly high-dimensional configuration space,
among which a point particle moves elastically. In the case !l LYAPUNOV EXPONENTS AND THE LORENTZ GAS

of the Lorentz gas, these scatterers (@ngenspheres; i.n the Consider a system with ak-dimensional phase spafe
case of the hard-sphere system, they are hypercylinders. I {ime t=0, the system is at an initial point in this space.
either case, the convexity of the scatterers makes the syste,, oves with time, according tg(o,t). If the initial con-

strongly chaotic. In several respects, the Lorentz gas is muc&‘itions are perturbed infinitesimally, by, the system

simpler than the hard—spherg sys.tem. First of aII,_ the .Scattegvolves along an infinitesimally different pagh+ 5y, speci-
ers for the Lorentz gas are invariant under rotations in con

i . . i L fied b
figuration space, which, as we will see, simplifies calcula—I y

tions enormously. Further, the uniform convexity of the (o) =M., (1) 8, (1)
Lorentz gas scatterers, in contrast to the hypercylinders of 7o
the hard-sphere systems, strongly simplifies proofs of efy, \which theM

. . ) L s t) is defined by
godic and chaotic propertigd4]. Yet we think it is of inter-

70(

est to perform an explicit calculation of the full Lyapunov dy(ye.t)
M _ U¥o
(= =20 2)
dyo
*Electronic address: A.S.deWijn@phys.uu.nl The Lyapunov exponents are the possible average rates of
"Electronic address: H.vanBeijeren@phys.uu.nl growth of such perturbations, i.e.,
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with resulting velocityv’ =(1-200)-v. Herel is thedxd
identity matrix. From Eq(2), the temporal behavior ofy
can be derived. During free flight,

8 = 6v, (4)

&v=0. (5

At a collision, év is also reflected. On the tangent trajectory,
the perturbation of the precollisional position with respect to
the reference trajectory leads to a perturbation in the colli-
FIG. 1. Geometry of a collision. The collision normalis the  sion normal and the collision time, which shows up in the
unit vector pointing from the center of the scatterer to the movingperturbation of the postcollisional velocity. The perturbation
point particle. of the collision time also leads to a slight deviation of the
postcollisional position differencgneasured at the instant of
1 collision on the tangent trajectorfrom the precollisional
Ai=lim " log| wi(t)], (3)  one (measured at the instant of collision on the reference
o trajectory. As a result, the tangent phase vectors are trans-
where (1) is theith eigenvalue oM, (t). If the system is formed according t¢8,15
ergodic, it comes arbitrarily close to any point in phase space ., "
for all initial conditions except for a set of measure zero. or'=(1-200) -, (6)
Therefore, the Lyapunov exponents are the same for almost
all initial conditions. We will order the exponents according &N =(1-200)-v+2Q-6r, (7)
to size, with\, being the largest anil  the smallest, as is . ) . . i
the convention. For each exponent there is a correspondirl Which the collision matrixQ is defined by
eigenvector oV 70(0' 1 V2
The dynamics of a purely Hamiltonian system are com- Q= —<v&—6=v+ —aoo—(v- &)1).
pletely invariant under time reversal. Also, for ergodic a V.o
Hamiltonian systems, due to the incompregsibil!ty of flow in From these equations it follows that, & and év are both
phase space, the phase-space attractor is invariant under t"Bgrallel tov before the collisiongr’ and &' are parallel to

reversal. Therefore, every tangent-space eigenvector thgt afier the collision and their absolute values are the same

grows exponentially under time evolution shrinks exponen-g pefore. These are two linearly independent perturbations,
tially under backward time evolution. As a consequence

¢ -~giving rise to two zero Lyapunov exponents. They result
since the Lyapunov spectrum does not change under timg,m time translation invariance and from invariance of the

reversal, there is a negative exponent of equal absolute valygyieciories in configuration space under a scaling of the ve-
for every positive Lyapunov exponent. This is called the conqo ity All other Lyapunov exponents for the Lorentz gas are
jugate pairing rule. nonzero. As a consequence of the conjugate pairing dule,
-1 of them are positive and the remainidg 1 are negative
with the same absolute values.

(8)

A. The Lorentz gas

We will consider the dilute random Lorentz gas. It is a
system with a fixed number of randomly placed spherical
scatterers with diameter at a(small) densityn in d dimen- To calculate the nonzero Lyapunov exponents, one needs
sions. To be specific, we will restrict ourselves to the case ofo consider what happens to an initial perturbatié®0) in
nonoverlapping scatterers, whee,priori, each configura- tangent space in the limit of infinite time. As an introduction,
tion without overlap among any two scatterers is equallywe first review the calculation of the largest Lyapunov expo-
likely. We will assume that the system is large. As long as ithent at low scatterer densities.
is finite, our preferred boundary conditions are periodic ones, An initial perturbation which is not parallel te generi-
but our considerations allow taking the infinite system limit, cally has a nonvanishing component along the most rapidly
at fixed n, without any problem. A single point particle growing eigenvector of the time evolution operator in tan-
moves between the scatterers, with spegdindergoing a gent space. Therefore, its evolution for long times will be
specular reflection at each collision. For given scatterer podominated by the largest Lyapunov exponent. To calculate
sitions, the phase space is represented by the position amigis time evolution, it suffices to consider the growth of the
velocity of the point particle;y=(r,v). The tangent phase projection of the growing vector onto a subspace of tangent
space at any point in phase space can be represented by #mace. It turns out to be convenient to use the projection onto
perturbations in these quantitie$y=(4r, &v). ov for this.

Between collisions with the scatterers, the particle moves Define ér; and év; as the tangent space vectors just after
freely, sor =v andv=0. At a collision with collision normal collisioni, with collision normals;, occurring a timer; after
o, the particle is reflected by a scatterer, as shown in Fig. 1collisioni—1. Let 6 be defined by

B. The largest Lyapunov exponent at low densities
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G-V =—0v COS#. (9) lll. PARTIAL STRETCHING FACTORS
Before collisioni, one has In standard terminology, the stretching factor is defined as
. the factor by which the expanding part of tangent space ex-

Oy =01+ 16V, (100  pands over a timé. This quantity can be used to calculate

the Ruelle pressure as well as the sum of the positive
Lyapunov exponents, equaling the Kolmogorov-Sinai en-
tropy in systems without esca2,3].

We may define theartial stretching factorAg(r,v,t) of a
p-dimensional subspac8& of the 2al-dimensional tangent
phase space as the factor by which the volume of an infini-
tesimal p-dimensional hypercube in this subspace has in-
creased after a time UnlessS s orthogonal to some eigen-

whereér; is used to indicate the perturbation in the position
just before collisiori. From Eqgs(7) and(8), it follows that,
after the(i—1)th collision, év;_, typically is of the order of
ori_v/a. At low densities, the mean free time is of the order
of 1/(nav). Therefore, to leading order in the density, the
first term on the right-hand side of Eg10) may be ne-
glected. Similarly, in Eq(7) the first term on the right-hand
side becomes negligible at low density, and B46) and(7)  yector associated with one of thp largest Lyapunov
may be combined into exponents, the partial stretching factor for very long times
&N, = 27.0; - v (12) will be dominated by thg most unstable directions in tan-
el gent phase space, in other words, by hiargest Lyapunov
The contributions to the Lyapunov exponents of the termsxponents. Explicitly, one has the identity
neglected in this approximation are at least one orden of
higher than the terms of leading ordé&j. In addition, in this
approximation, the time-reversal symmetry has been de- Eh =lim — Iog Adr,v,t). (16)
stroyed, hence only the positive Lyapunov exponents can be o

calculated. However, for the limit of density going to zero,
the results for these will be exact. As in the case of the largest Lyapunov exponent, where we

The action ofQ; on dv; may be described in the following could consider the long time growth of a basically arbitrary
way. Working on the component along it yields zero. It~ Vector in tangent space, we may choose the subspacthe
multiplies the component normal toin the plane through; ~ Way that is most convenient to us. And, as before, we choose
and & with a factorv/(a cos 6) and rotates the vector com- S s @ subspace of the space spanned by velocity deviations
ponent to the direction in this plane normalth Finally, it ~ Perpendicular tor. , L
multiplies all other components al; with v cos 6/a. De- The partial stretching factor just after collisidw is the

fine the unit vector orthogonal toin the plane spanned by ~ Product of the partial stretching factors of the collisions 1
and& as throughN. These depend on the relative orientations gF,
and the image o8. One can write
. Q-0 -0
= |sirl1 ¢|9| | (12 N
' Agr vty =T A @, 7,6, a9), (17)
i=1

One may rewriteQ; as

v o an 1 . in which ¢; is the projection angle gf; onto the image o
Qi= 2\€08 (1= vivi—pip) + cosg P (13 after the(i - 1)th collision. The subspac®can be split into a
' (p—1-dimensional subspace normal tg and a one-
Combining this with Egs(6) and (7), one finds that the dimensional subspace spanned by the projectigi ofto S.
velocity deviations to leading order mevolve according to  From Eq.(14) one finds that the former contributes a factor
of (7, cos#,)P! to the partial stretching factor. The projec-
ZUTi o 1 . . - . .
;= —[cos 6,(1 =90 —pipy) + ——p! } V. tion of p; onto the image of5 can be split into components
a 0s 6 perpendicular and parallel tp;. The former grows with
(14) 2v T cos 6;/a and the latter with 27;/(a cos 6;). The partial

stretching factor thus becomes
The largest Lyapunov exponent may now be calculated to

leading order in the density as

. 207 \P
™ AS)(v,ﬂ,b’i,ai) ( UT) cod 4,
Al—vd<log ' >

(15)
|&vi_4] \/ ) (cosm)
(sin ; cos 6)~ +
where vy is the average collision frequency for the system 0s 6
and the brackets indicate an average over the collision se- (18
quence, which will be discussed in more detail in Sec. lll. In
two and three dimensions, these calculations have been dofeom this expression one can calculate the Lyapunov expo-
before[1]. The result ind dimensions will appear as a spe- nents and obtain asymptotic approximations for high dimen-
cial case of the calculations presented in the next section. sionality.
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A. Lyapunov exponents density for colliding at angle® is proportional to the differ-
The sum of thep largest Lyapunov exponents can be Ca|_ent|a[ cross section. In the free flight time distribution, it
culated by substituting Eq17) into Eq.(16), contributes a factor of
P LN _ na*% Oy ;sin'2¢ cos 6 dadt. (21
;Ki:tl'inm QZ logAy (v, 7,61, @), (19 Here O, is the (m-1)-dimensional surface area of the
=N =t m-dimensional unit sphere, i.e.,
wherety is the time at which théth collision occurs. 02
In the low-density limit, the collisions in the Lorentz gas O = et (22
are uncorrelated and therefore the time average in(E9). I T)
can be replaced with an ensemble average, 2
P ® w2 2 Finally, the probability distribution of the projection angle
DIPN :f de dﬁf da of p onto the image oS afteri—1 collisions may be identi-
=1 o 70 0 fied with the fraction of the(d—1)-dimensional unit sphere
X wy(7,6,a;0)log AS)(U.T. 0,a). (20)  that has a projection angle betweerand a+da, i.e.,
Herew,(, 6, a;v) is a probability distribution, describing the Od—l—gogsind—z—pa cod e if p<d-1
probability density per units of time and angle for collisions pla) = Og-1
with the parameters, §, and « at a given velocityv. The &a) if p=d-1
indexp is attached to remind the reader of the dependence of '
the distribution ofa on the dimensionality of the subs&tA (23
more rigorous proof of the theorem used to derive @)  \yhere§(q) is the Dirac delta function. Combining Eq1)
can be found in Crisanti, Paladin, and Vulpighe]. and (23) with the exponential distribution of the free flight

o ) ) times, one finds, fop<d-1,
B. The distribution of free flight times

. . - 0)=2na" w0y 1,0y vy EXP—1,
To lowest order in the density of scatterers, collisions are vp(7, 0, ;v)=2na" v Og-1-pOprg EXP—ra7)

uncorrelated; effects of recollisions appear in the Lyapunov X sin®™2¢ cos 6 sif"™?Pa co$ e, (24)
exponents only at higher orders. With increasthgthese
higher-density corrections become even smaller, since the
probability of a return to a scatterer decreases rapidly. In this _ namwOy,

approximation, the time of free flight between consecutive WaT o1 (25
collisions is distributed exponentially. In addition, the distri-

bution of the angle® and« is independent of that of the free Note that Oy_,/(d-1) is equal to the volume of the
flight time, the direction of the incident velocity, and the (d—1)-dimensional unit sphere, s97104_,/(d-1) is the to-
orientation of the precollisional image & The probability tal cross section for a collision with a scatterer.

here the average collision frequency has the explicit form

IV. THE SPECTRUM

Substituting Eqs(18) and (24) into Eq. (20) yields an expression for the sum of thdargest Lyapunov exponents,

p s 2
_ _ 2
SIN= f drf do na® 0y vy exp(— vg7)sin 26 cos H[p Iog(%) +(p-1)log cose}
i= 0 0

2 72 2
cos
+ f daf da na*v Oy-4-,0, sin"26 cos ¢ sin* 2 Pa coda Iog[(sin « cos 0)% + ( cosz> } . (26
0 0

The first integral can easily be carried out analytically. The A. The KS entropy

second integral is more difficult. It can be simplified in spe-

cial cases, as described in Sec. IV A, or approximated, as By taking p=d-1, one can calculate the sum of all the
described in the remainder of this section. positive exponents, the Kolmogorov-SinékS) entropy.
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Since the distribution ofr is now aé function, the second 15 L
term in Eq.(26) becomes bl e R
’ d=32 o
2 13| i
- f do na® 'y Oy1,0, sin*2¢ cos < .
0 1.2 + -
X sint™2Pq cod ta log cosé. (27) k. . -
Performing the integrals yields 1.0 L obdtnsie dute sututtebuinton
0 0.2 0.4 06 08 1
d-1 — id
avg na’Oq-y
2 A= 2_ 2(d-1)| - log 2(d- 1)' Y FIG. 2. The scaled spectrum of positive Lyapunov exponents for
i=1 v several values of the dimensionalityat densityn=0.01/a2.
d+1 _ _
-(d-3 <°>< >+ : 28 a d+1
( )[‘” 2 )77 (28 A= ~210g 2 ¢ ) -3y-4°( || G0
U

Here ¢(x) is the (i+1)th derivative of logl'X);  The function 4/%[(d+1)/2] for large d behaves as log.
P(x)=[log I'()]1*Y. This reproduces the results of Van Therefore, the log, term dominates the behavior kf, and

Beijeren, Latz, and Dorfmafl—3]. \_ for larged behaves asymptotically ag log vy.
In a system of high dimensionality, the exponents are
B. Lower bound dominated by the directions perpendiculavtand 6. They

should behave as_ with a small correction.
A lower bound for the Lyapunov exponents can be de- S o
rived by assuming that the minimum growth of the tangent C. High dimensionality
space vector is realized for every collision. The minimum  The integrals in Eq(26) can be estimated for largkand
growth is the growth in the directions perpendiculabtand  arbitraryp. For large numbers of dimensions, the distribution

v. This yields of 6 is sharply peaked neat=7/2. The argument of the
logarithm in the second term of E¢R6) is therefore domi-
Ng-1> A, (29 nated by the 1/cd# term. The range ofr where the other
term dominates is of the order ofd,/and therefore that term
with \_ defined by can be neglected. This leads to

p w2 /2
SN =PpAt do| da na™w0, ;_,0, sif"26 cos 0 sif"?Pa codla(- 2 log cosh+ log cosa),  (31)
pOp
i=1 0 0

which vyields, after performing the integrals, Y

)\d_lz)\_+%_ (39
i B Vg ofd-1 ofd+1
2 Ni=pht o 2y—yf > T This is illustrated in Fig. 5. Th@th exponent can be calcu-
=1 lated by subtracting the expression for the sum of the first
. zp(o)(E)} (32) p-1 exponents from that for the firgtones. This results in
2)] -
- va| P _ P21
For the largest exponent, this means that the behavior for Np=A-* 2 {"/j (2) 4 2 ' (35

larged is approximatel
g PP y For the first few exponents, this yields

1 5 1 —
xlzx_+5vd<logd+y—5|og 2—5). (33 Ap=N_+1q4log 2, (36)
This behavior is shown in the uppermost curve in Fig. 3. Ng =\ +g(1-log 2, (37)

The smallest exponent is equal to the KS entropy minus L
the sum of the firsd—2 exponents. In the high dimension- - +—(| 2__)
ality limit, the smallest positive exponent behaves as Na= N+ v log 2)’ (38)
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(hgy - A) 15,

10-5 1 1 1 1
1 10 102 10® 10t 10°

5
10 d

FIG. 3. The four largest Lyapunov exponents as functions of theof ;f&fﬁ;@?ozggneﬂ positive Lyapunov exponent as a function
dimensionality. Their limiting behavior is indicated with lines. The 4
second, third, and fourth exponents converge to horizontal lines, aI

S . . .
calculated in Eqs(36)~39). ision, whereas in the Lorentz gas all components are in-

volved, though some will be increased more than others. A
_ i o greater similarity may be obtained by replacing the spherical
As a consequence of this, for fixed collision frequency,scatterers in the-dimensional Lorentz gas by randomly ori-

(AM1=A\)/vq grows logarithmically with dimensionality, ented hypercylinders. Indeed, our calculati¢as] indicate
whereas(h\,—\_)/vg With p>1 approaches a limit that is that the spectrum obtained for this system resembles much
independent ofl. This too is illustrated in Fig. 3. more that of the hard disk system, but there remain signifi-
cant differences due to the randomness of the cylinder orien-
tations(for hard disk systems, the scatterers in phase space
are hypercylinders of very specific orientatipnis addition,

The integrals in Eq(26) can be performed numerically. due to the absence of velocities for the scatterers, the
The results are displayed in Figs. 2-5, along with the limit-d-dimensional Lorentz gas will never exhibit a branch of
ing behaviors for large dimensionality, which we discussedGoldstone modes with Lyapunov exponents approaching
already in the previous section. zero as the inverse of system size, in contrast to hard disk

The offset of all Lyapunov exponents,, depends on Systemg4,11,13. However, there are also some similarities
both density and dimensionality. For lardeits magnitude is ~ between the twgpositive) spectra. First of all, both become
determined primarily by dimensionality, unless density is sdncreasingly flat with increasing indeapart from the Gold-

V. DISCUSSION

low as to satisfy stone branch for the hard dis)k§econd|y, both _become very
steep near the largest exponent. It is especially remarkable
d_ Od1 that, for fixed collision frequency, the difference between the
na’ < —. (39) .
d-1 largest exponent and the next largest one in the Lorentz gas

- . increases logarithmically with the number of degrees of free-
_It'is interesting to compare the Lyapunov spectrum of 8y, \yhereas all the subsequent differences, in the positive

high-dimensional Lorentz gas to that of a system of moving,f of the spectrum, approach fixed limiting values. Whether

hard disks, as computed by Dellago al. [17]. Figure 6 something like this also happens for hard disks is not known

shows such a spectrum for 750 particles in two dimensions 8l hresent, though there have been conjectures of similar be-
a density oin=0.1/a". One immediately notices that the Lor- 5vior by Searlest al. [19].

entz gas spectrum is much flatter than that of the hard disk
system. The explanation for this is that for the hard disk 15 . .
system only a few(four, to be specific components of the

velocity deviations in tangent space are changed at each col-

0.5 T T LrC L <
P o4f a -
“w ]
= o3fp .
e ’ o
T o2f. . 0 500 1000 1500
< i
= o1f -
FIG. 6. The spectrum of Lyapunov exponents from simulations
0.0 L

T 10 1(')2 183 1(')4 o [4,6,17 of 750 hard spheres in two dimensions aﬁ_densn'ty
d =0.1/a in a rectangular box of dimensions 10VX 75/yn, with
periodic boundary conditions. Only the positive exponents are plot-
FIG. 4. The discrete derivative of the largest Lyapunov exponented, since, by the conjugate pairing rule, the negative spectrum is
with respect to logd. The derivative converges t’p as calculated in  exactly the opposite. The kinetic energy per particle has been scaled
Eq. (33). to 1.
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VI. CONCLUSION could take advantage of the property that the partial stretch-

In this paper, we have calculated the full Lyapunov SpeC_ing factor is distr_ibutgd independently of the subspace being
trum for the dilute random Lorentz gas in an arbitrary num-Stretched16]. This will not be true any more for systems of
ber of dimensions. We have found analytical expressions fof@ny moving particles, for which the dynamics are not in-
the behavior of the spectrum for systems with many degree$driant under arbitrary rotations in configuration space.
of freedom. The spectrum becomes flatter with increasing?©Me new ideas will be required here.
dimensionality or decreasing density. The separation be-
tween the largest and second largest exponent, expressed in
units of the collision frequency, increases logarithmically
with dimensionality. We would like to thank J. R. Dorfman for useful discus-

Perhaps a similar approach may be applied to theions, and C. Dellago, H. A. Posch, R. Hirschl, and C. For-
Lyapunov spectra of systems of many particles, such aster for kindly providing us with their simulation program for
freely moving hard spheres. However, in the present case weard spheres.
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