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For a better understanding of the chaotic behavior of systems of many moving particles, it is useful to look
at other systems with many degrees of freedom. An interesting example is the high-dimensional Lorentz gas,
which, just like a system of moving hard spheres, may be interpreted as a dynamical system consisting of a
point particle in a high-dimensional phase space, moving among fixed scatterers. In this paper, we calculate the
full spectrum of Lyapunov exponents for the dilute random Lorentz gas in an arbitrary number of dimensions.
We find that the spectrum becomes flatter with increasing dimensionality. Furthermore, for fixed collision
frequency the separation between the largest Lyapunov exponent and the second largest one increases loga-
rithmically with dimensionality, whereas the separations between Lyapunov exponents of given indices not
involving the largest one go to fixed limits.
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I. INTRODUCTION

Many studies have been done on the chaotic properties of
the Lorentz gas[1–3]. It is a simple model which consists of
a single particle moving freely between elastic spherical scat-
terers. The scatterers can either be placed at random or in a
lattice configuration. The Lorentz gas provides a physical
system yet is still simple enough to allow for exact calcula-
tions of many properties. This simplicity is partially due to
the fact that the Lorentz gas contains only one moving par-
ticle, and therefore does not have many dynamical degrees of
freedom. Systems with more degrees of freedom, such as
moving hard spheres or disks, have also been studied fre-
quently. Extensive simulation work has been done on their
Lyapunov spectrum[4–6], and for low densities analytic cal-
culations have been done for the largest Lyapunov exponent
[7–10], the Kolmogorov-Sinai entropy[7,20], and the small-
est positive Lyapunov exponents[11,12].

From the viewpoint of dynamical systems theory, the Lor-
entz gas and hard-sphere systems are very similar, as noted
already many years ago by Sinai[13]. Both systems may be
viewed as “billiards,” i.e., systems consisting of fixed ob-
stacles in a mostly high-dimensional configuration space,
among which a point particle moves elastically. In the case
of the Lorentz gas, these scatterers are(hyper)spheres; in the
case of the hard-sphere system, they are hypercylinders. In
either case, the convexity of the scatterers makes the system
strongly chaotic. In several respects, the Lorentz gas is much
simpler than the hard-sphere system. First of all, the scatter-
ers for the Lorentz gas are invariant under rotations in con-
figuration space, which, as we will see, simplifies calcula-
tions enormously. Further, the uniform convexity of the
Lorentz gas scatterers, in contrast to the hypercylinders of
the hard-sphere systems, strongly simplifies proofs of er-
godic and chaotic properties[14]. Yet we think it is of inter-
est to perform an explicit calculation of the full Lyapunov

spectrum of a high-dimensional dilute Lorentz gas. It is in-
teresting to see the similarities as well as the differences
between the Lorentz gas and the hard-sphere spectra. In ad-
dition, the methods used here may well be amenable to re-
finements, so as to make them applicable to systems of many
moving particles.

In this paper, we study the behavior of a dilute, random,
nonoverlapping Lorentz gas in an arbitrary number of di-
mensions,d. For larged this system has many degrees of
freedom, while, largely due to the spherical symmetry of the
scatterers, it is still possible to do exact calculations. Here we
calculate the full Lyapunov spectrum in the absence of any
external fields.

As a preparation, we introduce Lyapunov exponents and
the Lorentz gas in Sec. II and we discuss the low-density
approximation. In Sec. III, we derive an integral expression
for the spectrum of Lyapunov exponents. Then, in Sec. IV,
we approximate this expression for high-dimensional sys-
tems and investigate its properties. In Sec. V, we discuss the
results and make comparisons to the hard-disk Lyapunov
spectrum.

II. LYAPUNOV EXPONENTS AND THE LORENTZ GAS

Consider a system with anN-dimensional phase spaceG.
At time t=0, the system is at an initial pointg0 in this space.
It evolves with time, according togsg0,td. If the initial con-
ditions are perturbed infinitesimally, bydg0, the system
evolves along an infinitesimally different pathg+dg, speci-
fied by

dgsg0,td = Mg0
stddg0, s1d

in which theMg0
std is defined by

Mg0
std =

dgsg0,td
dg0

. s2d

The Lyapunov exponents are the possible average rates of
growth of such perturbations, i.e.,
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li = lim
t→`

1

t
logumistdu, s3d

wheremistd is the ith eigenvalue ofMg0
std. If the system is

ergodic, it comes arbitrarily close to any point in phase space
for all initial conditions except for a set of measure zero.
Therefore, the Lyapunov exponents are the same for almost
all initial conditions. We will order the exponents according
to size, withl1 being the largest andlN the smallest, as is
the convention. For each exponent there is a corresponding
eigenvector ofMg0

std.
The dynamics of a purely Hamiltonian system are com-

pletely invariant under time reversal. Also, for ergodic
Hamiltonian systems, due to the incompressibility of flow in
phase space, the phase-space attractor is invariant under time
reversal. Therefore, every tangent-space eigenvector that
grows exponentially under time evolution shrinks exponen-
tially under backward time evolution. As a consequence,
since the Lyapunov spectrum does not change under time
reversal, there is a negative exponent of equal absolute value
for every positive Lyapunov exponent. This is called the con-
jugate pairing rule.

A. The Lorentz gas

We will consider the dilute random Lorentz gas. It is a
system with a fixed number of randomly placed spherical
scatterers with diametera at a(small) densityn in d dimen-
sions. To be specific, we will restrict ourselves to the case of
nonoverlapping scatterers, where,a priori, each configura-
tion without overlap among any two scatterers is equally
likely. We will assume that the system is large. As long as it
is finite, our preferred boundary conditions are periodic ones,
but our considerations allow taking the infinite system limit,
at fixed n, without any problem. A single point particle
moves between the scatterers, with speedv, undergoing a
specular reflection at each collision. For given scatterer po-
sitions, the phase space is represented by the position and
velocity of the point particle,g=sr ,vd. The tangent phase
space at any point in phase space can be represented by the
perturbations in these quantities,dg=sdr ,dvd.

Between collisions with the scatterers, the particle moves
freely, soṙ =v and v̇=0. At a collision with collision normal
ŝ, the particle is reflected by a scatterer, as shown in Fig. 1,

with resulting velocityv8=s1−2ŝŝd ·v. Here1 is the d3d
identity matrix. From Eq.(2), the temporal behavior ofdg
can be derived. During free flight,

dṙ = dv, s4d

dv̇ = 0. s5d

At a collision,dv is also reflected. On the tangent trajectory,
the perturbation of the precollisional position with respect to
the reference trajectory leads to a perturbation in the colli-
sion normal and the collision time, which shows up in the
perturbation of the postcollisional velocity. The perturbation
of the collision time also leads to a slight deviation of the
postcollisional position difference(measured at the instant of
collision on the tangent trajectory) from the precollisional
one (measured at the instant of collision on the reference
trajectory). As a result, the tangent phase vectors are trans-
formed according to[8,15]

dr 8 = s1 − 2ŝŝd · dr , s6d

dv8 = s1 − 2ŝŝd · dv + 2Q · dr , s7d

in which the collision matrixQ is defined by

Q =
1

a
Svŝ − ŝv +

v2

v · ŝ
ŝŝ − sv · ŝd1D . s8d

From these equations it follows that, ifdr and dv are both
parallel tov before the collision,dr 8 anddv8 are parallel to
v8 after the collision and their absolute values are the same
as before. These are two linearly independent perturbations,
giving rise to two zero Lyapunov exponents. They result
from time translation invariance and from invariance of the
trajectories in configuration space under a scaling of the ve-
locity. All other Lyapunov exponents for the Lorentz gas are
nonzero. As a consequence of the conjugate pairing rule,d
−1 of them are positive and the remainingd−1 are negative
with the same absolute values.

B. The largest Lyapunov exponent at low densities

To calculate the nonzero Lyapunov exponents, one needs
to consider what happens to an initial perturbationdgs0d in
tangent space in the limit of infinite time. As an introduction,
we first review the calculation of the largest Lyapunov expo-
nent at low scatterer densities.

An initial perturbation which is not parallel tov generi-
cally has a nonvanishing component along the most rapidly
growing eigenvector of the time evolution operator in tan-
gent space. Therefore, its evolution for long times will be
dominated by the largest Lyapunov exponent. To calculate
this time evolution, it suffices to consider the growth of the
projection of the growing vector onto a subspace of tangent
space. It turns out to be convenient to use the projection onto
dv for this.

Definedr i anddvi as the tangent space vectors just after
collision i, with collision normalŝi, occurring a timeti after
collision i −1. Let ui be defined by

FIG. 1. Geometry of a collision. The collision normalŝ is the
unit vector pointing from the center of the scatterer to the moving
point particle.
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ŝi ·v = − v cosui . s9d

Before collisioni, one has

dr i
− = dr i−1 + tidvi−1, s10d

wheredr i
− is used to indicate the perturbation in the position

just before collisioni. From Eqs.(7) and(8), it follows that,
after thesi −1dth collision, dvi−1 typically is of the order of
dr i−1v /a. At low densities, the mean free time is of the order
of 1/snavd. Therefore, to leading order in the density, the
first term on the right-hand side of Eq.(10) may be ne-
glected. Similarly, in Eq.(7) the first term on the right-hand
side becomes negligible at low density, and Eqs.(10) and(7)
may be combined into

dvi = 2tiQi · dvi−1. s11d

The contributions to the Lyapunov exponents of the terms
neglected in this approximation are at least one order ofn
higher than the terms of leading order[1]. In addition, in this
approximation, the time-reversal symmetry has been de-
stroyed, hence only the positive Lyapunov exponents can be
calculated. However, for the limit of density going to zero,
the results for these will be exact.

The action ofQi on dvi may be described in the following
way. Working on the component alongvi it yields zero. It
multiplies the component normal tov in the plane throughvi
and ŝ with a factorv / sa cosuid and rotates the vector com-
ponent to the direction in this plane normal tovi8. Finally, it
multiplies all other components ofdvi with v cosui /a. De-
fine the unit vector orthogonal tov in the plane spanned byv
and ŝ as

r̂i =
s1 − v̂iv̂id · ŝi

usinuiu
. s12d

One may rewriteQi as

Qi =
v
a
Scosuis1 − v̂iv̂i – r̂ir̂id +

1

cosui
r̂i8r̂iD . s13d

Combining this with Eqs.(6) and (7), one finds that the
velocity deviations to leading order inn evolve according to

dvi =
2vti

a
Fcosuis1 – v̂iv̂i – r̂ir̂id +

1

cosui
r̂i8r̂iG · dvi−1.

s14d

The largest Lyapunov exponent may now be calculated to
leading order in the density as

l1 = n̄dKlog
udviu

udvi−1u
L , s15d

where n̄d is the average collision frequency for the system
and the brackets indicate an average over the collision se-
quence, which will be discussed in more detail in Sec. III. In
two and three dimensions, these calculations have been done
before[1]. The result ind dimensions will appear as a spe-
cial case of the calculations presented in the next section.

III. PARTIAL STRETCHING FACTORS

In standard terminology, the stretching factor is defined as
the factor by which the expanding part of tangent space ex-
pands over a timet. This quantity can be used to calculate
the Ruelle pressure as well as the sum of the positive
Lyapunov exponents, equaling the Kolmogorov-Sinai en-
tropy in systems without escape[2,3].

We may define thepartial stretching factorLSsr ,v ,td of a
p-dimensional subspaceS of the 2d-dimensional tangent
phase space as the factor by which the volume of an infini-
tesimal p-dimensional hypercube in this subspace has in-
creased after a timet. UnlessS is orthogonal to some eigen-
vector associated with one of thep largest Lyapunov
exponents, the partial stretching factor for very long times
will be dominated by thep most unstable directions in tan-
gent phase space, in other words, by thep largest Lyapunov
exponents. Explicitly, one has the identity

o
i=1

p

li = lim
t→`

1

t
log LSsr ,v,td. s16d

As in the case of the largest Lyapunov exponent, where we
could consider the long time growth of a basically arbitrary
vector in tangent space, we may choose the subspaceS in the
way that is most convenient to us. And, as before, we choose
S as a subspace of the space spanned by velocity deviations
perpendicular tov.

The partial stretching factor just after collisionN is the
product of the partial stretching factors of the collisions 1
throughN. These depend on the relative orientations ofv ,ŝ,
and the image ofS. One can write

LSsr ,v,tNd = p
i=1

N

Lp
sidsv,ti,ui,aid, s17d

in which ai is the projection angle ofr̂i onto the image ofS
after thesi −1dth collision. The subspaceScan be split into a
sp–1d-dimensional subspace normal tor̂i and a one-
dimensional subspace spanned by the projection ofr̂i ontoS.
From Eq.(14) one finds that the former contributes a factor
of sti cosuidp−1 to the partial stretching factor. The projec-
tion of r̂i onto the image ofS can be split into components
perpendicular and parallel tor̂i. The former grows with
2vti cosui /a and the latter with 2vti / sa cosuid. The partial
stretching factor thus becomes

Lp
sidsv,ti,ui,aid = S2vti

a
Dp

cosp−1ui

3Îssin ai cosuid2 + Scosai

cosui
D2

.

s18d

From this expression one can calculate the Lyapunov expo-
nents and obtain asymptotic approximations for high dimen-
sionality.
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A. Lyapunov exponents

The sum of thep largest Lyapunov exponents can be cal-
culated by substituting Eq.(17) into Eq. (16),

o
i=1

p

li = lim
tN→`

1

tN
o
i=1

N

logLp
sidsv,ti,ui,aid, s19d

wheretN is the time at which theNth collision occurs.
In the low-density limit, the collisions in the Lorentz gas

are uncorrelated and therefore the time average in Eq.(19)
can be replaced with an ensemble average,

o
i=1

p

li =E
0

`

dtE
0

p/2

duE
0

p/2

da

3npst,u,a;vd log Lp
sidsv,t,u,ad. s20d

Herenpst ,u ,a ;vd is a probability distribution, describing the
probability density per units of time and angle for collisions
with the parameterst ,u, and a at a given velocityv. The
indexp is attached to remind the reader of the dependence of
the distribution ofa on the dimensionality of the subsetS. A
more rigorous proof of the theorem used to derive Eq.(20)
can be found in Crisanti, Paladin, and Vulpiani[16].

B. The distribution of free flight times

To lowest order in the density of scatterers, collisions are
uncorrelated; effects of recollisions appear in the Lyapunov
exponents only at higher orders. With increasingd, these
higher-density corrections become even smaller, since the
probability of a return to a scatterer decreases rapidly. In this
approximation, the time of free flight between consecutive
collisions is distributed exponentially. In addition, the distri-
bution of the anglesu anda is independent of that of the free
flight time, the direction of the incident velocity, and the
orientation of the precollisional image ofS. The probability

density for colliding at angleu is proportional to the differ-
ential cross section. In the free flight time distribution, it
contributes a factor of

nad–1v Od–1sind−2u cosu dudt. s21d

Here Om is the sm−1d-dimensional surface area of the
m-dimensional unit sphere, i.e.,

Om =
2pm/2

GSm

2
D . s22d

Finally, the probability distribution of the projection anglea
of r̂ onto the image ofS after i −1 collisions may be identi-
fied with the fraction of thesd−1d-dimensional unit sphere
that has a projection angle betweena anda+da, i.e.,

rsad = 5Od−1−pOp

Od−1
sind−2−pa cosp−1a if p , d − 1

dsad if p = d − 1,

s23d

wheredsad is the Dirac delta function. Combining Eqs.(21)
and (23) with the exponential distribution of the free flight
times, one finds, forp,d−1,

npst,u,a;vd=2nad−1vOd−1−pOpn̄d exps–n̄dtd

3sind−2u cosu sind−2−pa cosp−1a, s24d

where the average collision frequency has the explicit form

n̄d =
nad−1vOd−1

d − 1
. s25d

Note that Od−1/ sd−1d is equal to the volume of the
sd−1d-dimensional unit sphere, soad−1Od−1/ sd−1d is the to-
tal cross section for a collision with a scatterer.

IV. THE SPECTRUM

Substituting Eqs.(18) and (24) into Eq. (20) yields an expression for the sum of thep largest Lyapunov exponents,

o
i=1

p

li =E
0

`

dtE
0

p/2

du nad−1vOd−1n̄d exps− n̄dtdsind−2u cosuFp logS2vt

a
D + sp − 1dlog cosuG

+E
0

p/2

duE
0

p/2

da nad−1v Od−1−pOp sind−2u cosu sind−2−pa cosp−1a logFssin a cosud2 + Scosa

cosu
D2G . s26d

The first integral can easily be carried out analytically. The
second integral is more difficult. It can be simplified in spe-
cial cases, as described in Sec. IV A, or approximated, as
described in the remainder of this section.

A. The KS entropy

By taking p=d−1, one can calculate the sum of all the
positive exponents, the Kolmogorov-Sinai(KS) entropy.
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Since the distribution ofa is now ad function, the second
term in Eq.(26) becomes

−E
0

p/2

du nad−1v Od−1−pOp sind−2u cosu

3sind−2−pa cosp−1a log cosu. s27d

Performing the integrals yields

o
i=1

d−1

li =
an̄d

2v
H2sd − 1dF− logSnadOd−1

2sd − 1d D − gG
− sd − 3dFcs0dSd + 1

2
D + gGJ . s28d

Here csidsxd is the si +1dth derivative of logGsxd;
csidsxd=flog Gsxdgsi+1d. This reproduces the results of Van
Beijeren, Latz, and Dorfman[1–3].

B. Lower bound

A lower bound for the Lyapunov exponents can be de-
rived by assuming that the minimum growth of the tangent
space vector is realized for every collision. The minimum
growth is the growth in the directions perpendicular toŝ and
v. This yields

ld−1 . l−, s29d

with l− defined by

l− =
n̄d

2
F− 2 logSan̄d

2v
D − 3g – cs0dSd + 1

2
DG . s30d

The function cs0dfsd+1d /2g for large d behaves as logd.
Therefore, the logn̄d term dominates the behavior ofl−, and
l− for larged behaves asymptotically asn̄d log n̄d.

In a system of high dimensionality, the exponents are
dominated by the directions perpendicular tov and ŝ. They
should behave asl− with a small correction.

C. High dimensionality

The integrals in Eq.(26) can be estimated for larged and
arbitraryp. For large numbers of dimensions, the distribution
of u is sharply peaked nearu=p /2. The argument of the
logarithm in the second term of Eq.(26) is therefore domi-
nated by the 1/cos2u term. The range ofa where the other
term dominates is of the order of 1/d, and therefore that term
can be neglected. This leads to

o
i=1

p

li < pl− +E
0

p/2

duE
0

p/2

da nad−1vOd−1−pOp sind−2u cosu sind−2−pa cosp−1as− 2 log cosu + log cosad, s31d

which yields, after performing the integrals,

o
i=1

p

li < pl− +
n̄d

2
F2g – cs0dSd − 1

2
D + 2cs0dSd + 1

2
D

+ cs0dSp

2
DG . s32d

For the largest exponent, this means that the behavior for
larged is approximately

l1 < l− +
1

2
n̄dSlog d + g −

5

2
log 2 −

1

2
D . s33d

This behavior is shown in the uppermost curve in Fig. 3.
The smallest exponent is equal to the KS entropy minus

the sum of the firstd−2 exponents. In the high dimension-
ality limit, the smallest positive exponent behaves as

ld−1 < l− +
n̄d

2d
. s34d

This is illustrated in Fig. 5. Thepth exponent can be calcu-
lated by subtracting the expression for the sum of the first
p−1 exponents from that for the firstp ones. This results in

lp < l− +
n̄d

2
Fcs0dSp

2
D − cs0dSp − 1

2
DG . s35d

For the first few exponents, this yields

l2 < l− + n̄d log 2, s36d

l3 < l− + n̄ds1 − log 2d, s37d

l4 < l− + n̄dSlog 2 –
1

2
D , s38d

FIG. 2. The scaled spectrum of positive Lyapunov exponents for
several values of the dimensionalityd at densityn=0.01/a2.
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As a consequence of this, for fixed collision frequency,
sl1−l−d / n̄d grows logarithmically with dimensionality,
whereasslp−l−d / n̄d with p.1 approaches a limit that is
independent ofd. This too is illustrated in Fig. 3.

V. DISCUSSION

The integrals in Eq.(26) can be performed numerically.
The results are displayed in Figs. 2–5, along with the limit-
ing behaviors for large dimensionality, which we discussed
already in the previous section.

The offset of all Lyapunov exponents,l−, depends on
both density and dimensionality. For larged, its magnitude is
determined primarily by dimensionality, unless density is so
low as to satisfy

nad ,
Od−1

d − 1
. s39d

It is interesting to compare the Lyapunov spectrum of a
high-dimensional Lorentz gas to that of a system of moving
hard disks, as computed by Dellagoet al. [17]. Figure 6
shows such a spectrum for 750 particles in two dimensions at
a density ofn=0.1/a2. One immediately notices that the Lor-
entz gas spectrum is much flatter than that of the hard disk
system. The explanation for this is that for the hard disk
system only a few(four, to be specific) components of the
velocity deviations in tangent space are changed at each col-

lision, whereas in the Lorentz gas all components are in-
volved, though some will be increased more than others. A
greater similarity may be obtained by replacing the spherical
scatterers in thed-dimensional Lorentz gas by randomly ori-
ented hypercylinders. Indeed, our calculations[18] indicate
that the spectrum obtained for this system resembles much
more that of the hard disk system, but there remain signifi-
cant differences due to the randomness of the cylinder orien-
tations(for hard disk systems, the scatterers in phase space
are hypercylinders of very specific orientations). In addition,
due to the absence of velocities for the scatterers, the
d-dimensional Lorentz gas will never exhibit a branch of
Goldstone modes with Lyapunov exponents approaching
zero as the inverse of system size, in contrast to hard disk
systems[4,11,12]. However, there are also some similarities
between the two(positive) spectra. First of all, both become
increasingly flat with increasing index(apart from the Gold-
stone branch for the hard disks). Secondly, both become very
steep near the largest exponent. It is especially remarkable
that, for fixed collision frequency, the difference between the
largest exponent and the next largest one in the Lorentz gas
increases logarithmically with the number of degrees of free-
dom, whereas all the subsequent differences, in the positive
half of the spectrum, approach fixed limiting values. Whether
something like this also happens for hard disks is not known
at present, though there have been conjectures of similar be-
havior by Searleset al. [19].

FIG. 3. The four largest Lyapunov exponents as functions of the
dimensionality. Their limiting behavior is indicated with lines. The
second, third, and fourth exponents converge to horizontal lines, as
calculated in Eqs.(36)–(38).

FIG. 4. The discrete derivative of the largest Lyapunov exponent
with respect to logd. The derivative converges to12, as calculated in
Eq. (33).

FIG. 5. The smallest positive Lyapunov exponent as a function
of the dimensionality.

FIG. 6. The spectrum of Lyapunov exponents from simulations
[4,6,17] of 750 hard spheres in two dimensions at densityn
=0.1/a2 in a rectangular box of dimensions 10/În375/În, with
periodic boundary conditions. Only the positive exponents are plot-
ted, since, by the conjugate pairing rule, the negative spectrum is
exactly the opposite. The kinetic energy per particle has been scaled
to 1.
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VI. CONCLUSION

In this paper, we have calculated the full Lyapunov spec-
trum for the dilute random Lorentz gas in an arbitrary num-
ber of dimensions. We have found analytical expressions for
the behavior of the spectrum for systems with many degrees
of freedom. The spectrum becomes flatter with increasing
dimensionality or decreasing density. The separation be-
tween the largest and second largest exponent, expressed in
units of the collision frequency, increases logarithmically
with dimensionality.

Perhaps a similar approach may be applied to the
Lyapunov spectra of systems of many particles, such as
freely moving hard spheres. However, in the present case we

could take advantage of the property that the partial stretch-
ing factor is distributed independently of the subspace being
stretched[16]. This will not be true any more for systems of
many moving particles, for which the dynamics are not in-
variant under arbitrary rotations in configuration space.
Some new ideas will be required here.
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