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In the study of chaotic behavior, Lyapunov exponents play an important part. In this paper, we demonstrate
how the Lyapunov exponents close to zero of a system of many hard spheres can be described as Goldstone
modes, by using a Boltzmann type of approach. At low densities, the correct form is found for the wave
number dependence of the exponents as well as for the corresponding eigenvectors in tangent space. The
predicted values for the Lyapunov exponents belonging to the transverse mode are within a few percent of the
values found in recent simulations, the propagation velocity for the longitudinal mode is within 1%, but the
value for the Lyapunov exponent belonging to the longitudinal mode deviates from the simulations by 30%.
For higher densities, the predicted values deviate more from the values calculated in the simulations. These
deviations may be due to contributions from ring collisions and similar terms, which, even at low densities, can
contribute to the leading order.
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I. INTRODUCTION

In the past years, interest in the connections between
dynamical-systems theory and statistical mechanics has in-
creased and many important results have been obtained.
Some of the interest has been directed towards the connec-
tions between chaoticity and the decay to equilibrium. Gal-
lavotti and Cohen[1,2] put forward a chaotic hypothesis,
conjecturing that many-particle systems as studied by statis-
tical mechanics will generically be strongly chaotic. A cen-
tral role in the study of these and related properties is played
by the Lyapunov exponents, which describe the exponential
separation or convergence of nearby trajectories in phase
space.

Many calculations of chaotic properties have been done
for variations of the Lorentz gas, which is a system of one
particle bouncing between fixed spherical hard scatterers
(see, for example, Refs.[3–6]). Recently, calculations have
also been done for the largest exponents of systems of many
freely moving hard spheres[7,8]), which is a more realistic
model than the single-particle system of a Lorentz gas.
Simulations for the entire spectrum of this system have been
done by Posch, Hirschl, and Dellago[9,10]. The smallest
positive and corresponding negative exponents from these
simulations have received a lot of attention because of their
unexpected behavior. For large enough systems, they are in-
versely proportional to the system length. The tangent-space
eigenvectors associated with these exponents have a wave-
like form.

Attempts have been made to approach these exponents by
using random-matrix theory by Eckmann and Gat[11], and
by Taniguchi, Dettmann, and Morriss[12,13]. Another ap-
proach based on kinetic theory has been taken by McNamara
and Mareschal[14].

In this paper, we explain some of the behavior of the
small exponents both qualitatively and quantitatively. Sec-

tions II and III are a short introduction to Lyapunov expo-
nents and the results of the simulations done by Posch and
Hirschl for hard spheres in two dimensions[9]. In Sec. IV,
we show that the small exponents are in fact due to Gold-
stone modes. After an explanation of the dynamics of hard
spheres in Sec. V, we derive a set of equations for the values
of the exponents in Sec. VI. The equations are derived by
using a Boltzmann type of approach including a Stoßzahlan-
satz. Finally, we discuss the general form of the solutions in
Sec. VII and the quantitative results derived from them in
Sec. VIII.

II. LYAPUNOV EXPONENTS

Consider a system with anN-dimensional phase spaceG.
At time t=0 the system is assumed to be at an initial pointg0
in this phase space, evolving with time according togsg0,td.
If the system is perturbed by an infinitesimal differencedg0
in initial conditions, it evolves along an infinitesimally dif-
ferent pathg+dg, wheredg is in the tangent spacedG. The
evolution in tangent space is described by

g sg0 + dg0,0d = g0 + dg0, s1d

g sg0 + dg0,td = g sg0,td + dg sg0,td, s2d

dg sg0,td = Mg0
std · dg0, s3d

whereMg0
std is anN-dimensional matrix, defined by

Mg0
std =

dg sg0,td
dg0

. s4d

The Lyapunov exponents are the average rates of growth of
such infinitesimal changes that are eigenvectors ofMg0
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li = lim
t→`

ln mistd
t

, s5d

wheremistd is theith eigenvalue ofMg0
std. In systems which

are ergodic, almost every trajectory comes infinitesimally
close to any point in phase space. This means that the
Lyapunov exponents are almost independent of the initial
conditions. Often the Lyapunov exponents are defined not by
using Mg0

std, but fMg0
std ·Mg0

std†g1/2. In the latter definition
the exponents are real. The imaginary components of the
Lyapunov exponents, as we define them here, are also re-
ferred to as the winding numbers.

For a classical system of hard spheres without internal
degrees of freedom, the phase space and tangent space may
be represented by the positions and velocities of all particles
and their infinitesimal deviations,

gi = sr i,vid, s6d

dgi = sd r i,d vid, s7d

wherei runs over all particles anddgi is the contribution of
particle i to dg.

In the case of a purely Hamiltonian system, such as hard
spheres with only the hard particle interaction, the dynamics
of the system are completely invariant under time reversal.
Also, due to the incompressibility of flow in phase space, the
attractor is invariant under time reversal. Therefore, every
tangent-space eigenvector that grows exponentially in for-
ward time decreases exponentially in backward time. Since
the Lyapunov spectrum does not change under time reversal,
for every positive Lyapunov exponent in such a system there
is a negative exponent of equal absolute value. This is called
the conjugate pairing rule. In systems which are reversible,
but for which the attractor is not invariant under time rever-
sal, the conditions for and the form of the conjugate pairing
rule are somewhat different[7].

Vectors in tangent space which are generated by symme-
tries of the dynamics of the system do not grow or shrink
exponentially. They are eigenvectors with Lyapunov expo-
nents 0 and are referred to as the zero modes. For a system of
hard spheres under periodic boundary conditions, these sym-
metries and their corresponding zero modes are uniform
translations, Galilei transformations, time translations, and
velocity scaling. They correspond to the initial displacements

dgi = sDr 0,0d, s8d

dgi = s0,Dv0d, s9d

dgi = sDt0vi,0d = sDr v,0d, s10d

dgi = s0,Dl0vid = s0,Dvvd, s11d

whereDr 0, Dv0, Dt0, andDl0 are constant vectors and sca-
lars which are independent of the particle. The quantitiesDr 0
and Dv0 can have components in alld directions of the
space. In the case of Galilei transformations and velocity
scaling the tangent-space vectors grow linearly, rather than

exponentially, with time. Hence the corresponding Lyapunov
exponents are zero.

III. LYAPUNOV SPECTRUM OF HARD SPHERES

In principle,Mg0
std occurring in Eq.(3) can be calculated

numerically for finite times for any finite system and the
eigenvalues can be determined. Posch and Hirschl[9] have
done molecular dynamics simulations to determine the entire
Lyapunov spectrum of systems consisting of many hard
disks in rectangular boxes with periodic boundary condi-
tions. A spectrum as calculated by Posch and Hirschl is dis-
played in Fig. 1. The eigenvectors in tangent space belonging
to the large exponents are typically very localized; only a
few particles closely together contribute significantly to a
given eigenvector.

When the system is large enough compared to the mean
free path, a step structure appears in the Lyapunov exponents
near zero. The size of the steps is inversely proportional to
the largest dimension of the box. The tangent-space eigen-
vector is distributed over all particles, much in the same way
as with the zero modes. An example of this is shown in Fig.
2.

The tangent-space vectors belonging to the six exponents
in each step appear, on average and to first approximation, to
be linear combinations of the zero modes with a sinusoidal
modulation. This is very apparent in the example in Fig. 2.
The slow modes belonging to a certain wave vector can be
separated into two groups, one consisting of four longitudi-
nal modes and the other one of two transverse modes. The
transverse modes are found to be linear combinations of
sinusoidal modulations of the zero modes resulting from a
translation or a Galilei transformation in the direction per-
pendicular to the wave vector. The longitudinal modes are
linear combinations of modulations of the four remaining
zero modes. The transverse modes are nonpropagating, but
the longitudinal modes propagate through the system. This
behavior has been confirmed in direct simulation Monte

FIG. 1. The spectrum of Lyapunov exponents from the simula-
tions [9,10,15] of 750 hard spheres in two dimensions at density
n=0.1 in a rectangular box of dimensions 10375 a2/n, with peri-
odic boundary conditions. Only the positive exponents are plotted,
since, by the conjugate pairing rule, the negative spectrum is ex-
actly the opposite. The inset shows an enlargement of the bottom
right corner.
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Carlo simulations, performed by Forster and Posch[15]. For
more details on these modes, see Refs.[9,10].

IV. GOLDSTONE MODES

The sinusoidal modes found in the simulations may be
explained as Goldstone modes. These occur in systems with
a continuous symmetry, such as the symmetries associated
with the zero modes. Translation invariance, e.g., causes the
evolution operator to commute with the translation operator,
so that they have a set of common eigenfunctions. These
have the general form

dgi = fksv j,r i jdexpsik · r id, s12d

where the eigenvalues of the operator translating over the
vectora are of the form expsik ·ad. The Goldstone modes are
those eigenmodes that fork→0 reduce to linear combina-
tions of the zero modes. For nonzero values ofk, they con-
tain a sinusoidal modulation in space of the continuous sym-
metry which grows or shrinks slowly with time. These
modes were first introduced by Goldstone[16]. Hydrody-
namic modes and phonons in crystals are well-known ex-
amples.

In order to calculate the Lyapunov exponents belonging to
these Goldstone modes, one first needs to consider the dy-
namics of the system.

V. DYNAMICS OF HARD SPHERES IN PHASE SPACE
AND TANGENT SPACE

Consider a gas of identical hard spheres or disks of diam-
etera and massm in d dimensions. The evolution in phase
space consists of an alternating sequence of free flights and
collisions. During free flights the particles do not interact and
the positions grow linearly with the velocities,

r istd = r ist0d + st − t0dvist0d, s13d

vistd = vist0d. s14d

At a collision, momentum is exchanged between the collid-
ing particles along the collision normal,ŝ=sr i −r jd /a, as
shown in Fig. 3. The other particles do not interact. Using
primes to denote the coordinates in phase space after the
collision, we find

r i8 = r i , s15d

vi8 = vi − ŝsŝ ·vi jd, s16d

wherevi j =vi −v j.
From Eqs. (4) and (13)–(16) the dynamics in tangent

space can be derived[7]. During free flight there is no inter-
action between the particles and the components of the
tangent-space vector transform according to

Sd r i8

d vi8
D = Zst − t0d ·Sd r i0

d vi0
D , s17d

Zst − t0d = S I st − t0dI
0 I

D , s18d

in which I is thed3d identity matrix.
At a collision between particlesi and j , only the contri-

butions to the tangent-space vectors of the colliding particles
are changed[8]. As shown in Fig. 3, an infinitesimal differ-
ence in the positions of the particles leads to an infinitesimal
change in the collision normal and collision time. Thev
+dv are exchanged alongŝ+dŝ according to Eq.(16). This
leads to infinitesimal changes in both positions and velocities
right after the collision,

FIG. 2. The component ofd r in the short directiondx is plotted
against the position of the particle in the long directiony for l1493,
one of the transverse modes in the first step. These data are from the
same simulation as the data in Fig. 1. The corresponding exponent
is indicated there with a full box.

FIG. 3. Two particles at a collision in relative phase space. The
collision normalŝ is the unit vector pointing from the center of one
particle to the center of the other.
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1
d r i8

d r j8

d vi8

d v j8
2 =1

I − S S 0 0

S I − S 0 0

− Q Q I − S S

Q − Q S I − S
2 ·1

d r i

d r j

d vi

d v j

2 ,

s19d

in which S andQ are thed3d matrices

S = ŝŝ, s20d

Q =
fsŝ ·vi jdI + ŝvi jg · fsŝ ·vi jdI − vi j ŝg

asŝ ·vi jd
. s21d

Here the notationab denotes the standard tensor product of
vectorsa andb. Let Zstd be theNd3Nd matrix which per-
forms the transformations ofZstd on all particles. LetLp be
the Nd3Nd matrix which performs the transformations of
Eq. (19) on the two particles involved in collisionp and
leaves the rest of the particles untouched.Mg0

std in Eq. (3) is
a product of these matrices for the sequence of collisions
s1,2, . . . ,pd between timet and t0. Its specific form reads

Mg0
std = Zst − tpd ·Lp ·Zstp − tp−1dLp−1 · ¯ ·L1 ·Zst1 − t0d.

s22d

VI. BOLTZMANN AND ENSKOG EQUATION

Except in a calculation where the path of every particle
would be calculated rigorously from the initial conditions, as
done in the molecular dynamics simulations, it is impossible
to know the matrixMg0

in Eq. (3) exactly. The tangent-space
eigenvector belonging to a given Lyapunov exponent will in
general depend on the initial conditions of all the particles in
a much too complicated way to specify exactly. It is there-
fore impossible to know the tangent-space vector which be-
longs to any Lyapunov exponent exactly. To find the expo-
nents, one has to make some statistical approximation
without allowing contributions along faster growing tangent-
space vectors to blow up. To this end, we start with assump-
tions similar to theStoßzahlansatzin the Boltzmann equa-
tion.

A. Equations in m space

To illustrate our calculations we first briefly review the
Boltzmann and Enskog equations describing the dynamics of
hard-sphere and hard-disk systems at low, respectively mod-
erate densities. For either one may start from the first
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy equation

] fsr ,v,td
] t

+ v ·¹r fsr ,v,td + ¹v ·asr ,v,tdfsr ,v,td

=E
ŝ·sv−udø0

du dŝ nad−1uŝ · sv − udu

3 ff s2dsr ,v8,r + aŝ,u8,td− f s2dsr ,v,r − aŝ,u,tdg,

s23d

in which f s2d denotes the two-particle distribution function,u
and v respectively,u8 and v8 are the velocities before the
collision with collision normalŝ in the direct and restituting
collision.

The second and third term on the left-hand side of the
equation, respectively, describe the effects of free flight in
position space and those of the action of external forces. The
vectorasr ,v ,td is the acceleration of a particle due to exter-
nal forces as a function of position, velocity, and time.

In the low-density approximation, Boltzmann’sStoßzahl-
ansatzapproximates the precollisional pair distribution func-
tions in this equation by products of one-particle distribu-
tions. In addition both of these are evaluated at the same
positionr , which is allowed if the radiusa is small compared
to the mean free path. The Enskog equation is a heuristic
generalization of this, known to give a good approximate
description of the dynamics up to moderate densities(about a
quarter of close-packing). In this equation the pair distribu-
tion is approximated by the product of two one-particle dis-
tribution functions, evaluated at the actual positions of the
two particles, and a factorxE, equal to the equilibrium pair
correlation function at contact between the two particles
evaluated as a function of the densityn(sr 1+r 2d /2) at the
point halfways betweenr 1 and r 2. Notice that this approxi-
mation becomes exact for a system in homogeneous equilib-
rium. The explicit form of the Enskog equation thus becomes

] fsr ,v,td
] t

+ v ·¹r fsr ,v,td

=E
ŝ·sv−udø0

du dŝ xEsndnad−1uŝ · sv − udu

3ffsr ,v8,tdfsr + aŝ,u8,td − fsr ,v,tdfsr − aŝ,u,tdg.

s24d

This equation effectively reduces to the Boltzmann equation
in the limit n→0, when the difference in position between
the two colliding particles,r ij =aŝ, may be ignored andxE
approaches unity.

In equilibrium the time derivative term vanishes and, in
absence of external fields, the particles are distributed homo-
geneously. This yields the Maxwellian solution

fsr ,v,td = nfMsvd = nS2pm

kBT
Dd/2

expS−
muvu2

2kBT
D , s25d

where T is the temperature, related to the average kinetic
energy per particleE throughE=dkBT/2. In this paper, only
the equilibrium system is studied.

More details on the Boltzmann equation and Enskog’s
theory of dense gases may be found in Refs.[17,18].

B. Equations in tangent m space

To describe the dynamics in tangent space, a generalized
Boltzmann equation must be derived for the single-particle
distribution function in bothm space and “tangentm space,”
fsr ,v ,d r ,d v ,td. On integration over the variables in tangent
space the equation and the solutions we are interested in
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must reduce to Eqs.(24) and (25), respectively.
For given initial conditions the eigenvectors ofMg0

in
general depend sensitively on the precise values of the col-
lision parameters of all collisions, as generated by the posi-
tions and velocities of all particles. The zero modes are ex-
ceptions to this. For smallk it is to be expected that the
Goldstone modes behave in a similar way and are approxi-
mately independent of the collision parameters of the various
collisions. Under those circumstances one may expect that
the tangent-space vectorsd r and d v can be described by a
single-particle distribution function that depends smoothly
on velocity, position, and time, just like the velocity distri-
bution in ordinarym space. If in addition one makes the
assumption that the distribution function of the tangent-space
vectors of two particles about to collide, factorizes in a simi-
lar way as the distribution of their velocities, one ends up
with a generalized Enskog equation in tangentm space,
which, in absence of an external field, is of the form

] fsr ,v,d r ,d v,td
] t

+ v ·¹r fsr ,v,d r ,d v,td

+ dv ·¹d r fsr ,v,dr ,dv,td

=E
ŝ·sv−udø0

du dŝ dd sdd u xEsndnad−1uŝ · sv − udu

3ffsr ,v8,d r 8,d v8,tdfsr + aŝ,u8,ds8,d u8,td

− fsr ,v,d r ,d v,tdfsr − aŝ,u,d s,d u,tdg. s26d

If the tangentm-space variablesdr and dv are integrated
over, this equation reduces to Eq.(24).

Becaused r andd v are infinitesimal, the dynamics in tan-
gent space are linear in these quantities. Therefore, from Eqs.
(19) and(26) one may obtain closed linear equations for the
time evolution of the average first momentskd r l and kd vl.
To this end, multiply both sides of Eq.(26) by the tangent-
space vectors and then integrate over them.

The result is a set of equations for the averages,

d

dt
d r sr ,v,td = − v ·

]

] r
d r sr ,v,td + d vsr ,v,td + CSd r sr ,v,td,

s27d

d

dt
d vsr ,v,td = − v ·

]

] r
d vsr ,v,td + CSd vsr ,v,td

+ CQd r sr ,v,td. s28d

The functionsd r sr ,v ,td and d vsr ,v ,td are the averages of
the tangentm-space vectors of a particle, as a function of its
position and velocity, and of time. The linear collision opera-
tors CS and CQ are associated with the matricesS and Q,
and given by

CSd qsr ,v,td =E
ŝ·sv−udø0

du dŝ xEsndnad−1uŝ · sv − udufMsud

3hd qsr ,v8,td + S · fd qsr + aŝ,u8,td

− d qsr ,v8,tdg − d qsr ,v,tdj, s29d

CQd r sr ,v,td =E
ŝ·sv−udø0

du dŝ xEsndnad−1uŝ · sv − udufMsud

3 Q · fd r sr + aŝ,u8,td − d r sr ,v8,tdg, s30d

whered q can be eitherd r or d v. In Eq. (29) the first two
terms between braces are gain terms. The last term is the loss
term. Note that, from Eq.(21), Q is a function of the colli-
sion parameter and the velocities of the particles before the
collision. This means that in Eq.(30) it is a function ofŝ, u8,
andv8. The collision operators are proportional to the colli-
sion frequencyn, which for dilute systems is proportional to
the number densityn.

C. Fourier transform

As the translation operators commute with the collision
operators(29) and(30), solutions to Eqs.(27) and(28) may
be found of the form

d qsr ,v,td = Dqsvdexpsik · r + ltd, s31d

whereq is eitherr or v, andkj =2pnj /Lj is the j th compo-
nent of the wave vector of the sinusoidal modulation andl is
the Lyapunov exponent. Among these the Goldstone modes
are those solutions that in the limit of vanishing wave num-
ber reduce to linear combinations of the zero modes. For
these modes to stand out among the continuum of other
modes their wavelength has to be large compared to the typi-
cal length scale of the mean free path, or

kuv̄u ! n. s32d

On substituting Eq.(31) into Eqs. (27) and (28), they
become eigenvalue equations for the Goldstone modes,

lDr svd = − isk ·vdDr + Dv + BSDr , s33d

lDvsvd = − isk ·vdDv + BSDv + BQDr . s34d

Spatial propagation, as seen in the simulations for the longi-
tudinal modes, may be accounted for by allowingl to have
an imaginary component.BS and BQ are the Fourier trans-
forms of CS and CQ,

BSDqsvd =E
ŝ·sv−udø0

du dŝ xEsndnad−1uŝ · sv − udufMsud

3 hDqsv8d + S · fDqsu8dexps− iak · ŝd

− Dqsv8dg − Dqsvdj, s35d
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BQDr svd =E
ŝ·sv−udø0

du dŝ xEsndnad−1uŝ · sv − udufMsud

3Q · fDr su8dexps− iak · ŝd − Dr sv8dg, s36d

whereDq can be eitherDr or Dv. One of these, for instance
Dv, can be eliminated from the equations. One must solve
Eq. (33) for Dv and substitute the result into Eq.(34). This
yields

fsl + ik ·v − BSd2 − BQgDr = 0. s37d

This equation can be solved by the use of a perturbation
expansion in powers ofk, provided the mean free path is
much smaller than the wavelength, as expressed by Eq.(32).
This is done in Sec. VII A.

VII. SOLUTIONS

A. Perturbation theory

When Eq.(32) is substituted one may expand the opera-
tors and solutions as

BS = BS
s0d + kBS

s1d + k2BS
s2d + ¯ , s38d

BQ = BQ
s0d + kBQ

s1d + k2BQ
s2d + ¯ , s39d

Dr = Dr s0d + kDr s1d + k2Dr s2d + ¯ . s40d

Note that fork→0, the linear operatorsBS and BQ be-
come identical to CS and CQ. When acting on linear combi-
nations of zero modesDr s0d they satisfy the properties

BS
s0dDr s0d = BQ

s0dDr s0d = kDr s0duBS
s0d = kDr s0duBQ

s0d = 0,

s41d

wherek ·u ·l represents the inner product defined by integra-
tion against a Maxwell distribution of the velocity, which is
the equilibrium distribution. As it turns out,BQ

s0d has some
nontrivial right eigenfunctions with zero eigenvalues, which
will have an important effect on the limiting values of
Lyapunov exponents in the limit of vanishing density. An

example of such an eigenfunction isDr svd=v'k̂ +vik̂',
wherev' andvi are the components ofv perpendicular and
parallel tok.

In zeroth order Eq.(37) reduces to

fsls0d − BS
s0dd2 − BQ

s0dgDr s0d = 0. s42d

The relevant solutions to this are the zero modes, withls0d

=0. This means that the Goldstone modes to leading order in
k are the zero modes with a sinusoidal modulation, in nice
agreement with the findings in Refs.[9,10].

In linear order, one finds with the aid of Eq.(41)

f− BS
s0dsi k̂ ·v − BS

s1dd − BQ
s1dgDr s0d = − fsBS

s0dd2 − BQ
s0dgDr s1d,

s43d

where k̂ is the unit vector in the direction ofk. This is an
equation forDr s1d. Its formal solution is

Dr s1d = fsBS
s0dd2 − BQ

s0dg−1fBS
s0dsi k̂ ·v − BS

s1dd + BQ
s1dgDr s0d.

s44d

This form suggests thatDr s1d is of zeroth order inn, just as
Dr s0d, but this is actually not the case, because the operator
fsBS

s0dd2−BQ
s0dg−1 acts on functions with nonvanishing compo-

nents along the nontrivial right zero eigenfunctions ofBQ
s0d.

This yields contributions toDr s1d of order 1/n. One might
wonder whether this could cause a divergence in the limit of
vanishing density, but that is not the case because of the
restriction imposed onk by Eq. (32).

The second-order equation involves the first-order
Lyapunov exponentls1d, the second-order Lyapunov expo-
nentls2d, and the second-order tangent-space vectorDr s2d,

fh− BS
s0d,ls2d − BS

s2dj+ + sls1d + i k̂ ·v − BS
s1dd2 − BQ

s2dgDr s0d

+ fh− BS
s0d,i k̂ ·v − BS

s1dj+ − BQ
s1dgDr s1d

+ fsBS
s0dd2 − BQ

s0dgDr s2d = 0, s45d

where h. , .j+ is used to denote the anticommutator of two
operators. On taking the inner product withDr s0d, all terms
involving Dr s2d vanish as a consequence of Eq.(41). The
resulting set of equations reads

kDr s0dufsls1d + i k̂ ·v − BS
s1dd2 − BQ

s2dguDr s0dl

+ kDr s0duf− si k̂ ·v − BS
s1ddBS

s0d − BQ
s1dguDr s1dl = 0.

s46d

SinceDr s0d is a linear combination of three independent zero
modes, Eq.(46) actually has to be read as a 333 matrix
equation involving the matrix elements between the various
zero modes. In principle all of these are second-order poly-
nomials inls1d. The eigenvalues, as usual, follow from the
condition that the determinant of the matrix vanishes as a
function of ls1d.

B. General form of the solutions

In order to investigate the general structure of Eq.(46) it
is useful to organize the zero modes forDr s0d as

Dr '
s0d = k̂'; Dr i

s0d = k̂ ; Dr v
s0d =Îbm

2
v, s47d

whereb=1/skBTd. The first mode consists of a perpendicular
displacement, i.e., a spatial translation normal to the wave
vector, the second mode to a parallel displacement, and the
third one to a time translation.

The first mode is odd ink̂' and the last two even; the first
two modes are even inv and the last one odd. The collision

operatorsBS andBQ as well as the functionk̂ ·v are odd in

k̂' to every order. The operatorsBS
snd andBQ

snd are even inv
for evenn and odd for oddn. On the basis of these parity
properties it follows immediately that the structure of Eq.
(46), written as a matrix equation on the basis(47), is re-
stricted to
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sls1dd211 0 0

0 1 0

0 0 1
2 + ils1d10 0 0

0 0 xv,i

0 xi,v 0
2 − 1y',' 0 0

0 yi,i 0

0 0 yv,v
2

= 0. s48d

The constantsx andy are determined by temperature and by
the form of the collision operators. From this it becomes
clear that the equation can be split into two parts, one for the
perpendicular zero mode, the transverse part, and one for the
parallel zero mode and the time mode, the longitudinal part.
From the general form of the matrices one can derive the
general form of the Lyapunov exponentsl=kls1d to be

ltrans= ± kÎy',', s49d

llong = ± kÎy1 ± iÎy2, s50d

where y1 and y2 are functions ofxv,i ,xi,v ,yi,i, and yv,v. If
y','.0, the Lyapunov exponent of the transverse mode is
real and therefore the mode is of the same form as in the
simulations reported in Refs.[9,10]. If y2.0, the longitudi-
nal Lyapunov exponents have both real and imaginary com-
ponents, and these modes also have the form of the longitu-
dinal modes found in the simulations.

C. Density expansion

The Stoßzahl ansatz is an approximation that for many
purposes, e.g., the derivation of hydrodynamic equations
from the Boltzmann equation with explicit expressions for
the transport coefficients[18], becomes exact in the limit of
vanishing density. Therefore we want to investigate the be-
havior of our equations in this limit and compare to the re-
sults found in the simulations. In the limit of vanishing den-
sity Eq. (46) becomes

kDr s0dufls1d + isk̂ ·vdg2uDr s0dl

− kDr s0dufisk̂ ·vdBS
s0d + BQ

s1dguDr s1dl = 0. s51d

For this equation it is crucial indeed thatDr s1d is of the order
of n−1. If there were no nontrivial right eigenfunctions ofBQ

s0d

with eigenvalue 0,Dr s1d would be one order ofn higher, and
the second term would not contribute to the Lyapunov expo-
nents in the limit of vanishing density.

In the following section we will further discuss the actual
magnitudes of the two terms in Eq.(51).

VIII. RESULTS AND DISCUSSION

If only the first term in Eq.(46) is kept, the calculation is
fairly simple. From now on we choosed=2. The same cal-
culations can easily be repeated ford=3, but there are far
fewer simulation results to compare to. Equation(48) in this
approximation becomes

sls1dd2bm

2 11 0 0

0 1 0

0 0 1
2 + ils1dÎbm

2 10 0 0

0 0 1

0 1 0
2 − 1

1
2 0 0

0 1
2 0

0 0 1
2

= 0, s52d

independent of the density. The solutions for the Lyapunov
exponents then are

ltrans= ±
k

Îbm
, s53d

llong = ±
1

4
sÎ1 + iÎ7 +Î1 − iÎ7dÎ 2

bm
k s54d

< ± 0.978
k

Îbm
, s55d

vlong = ±
1

4i
sÎ1 + iÎ7 −Î1 − iÎ7dÎ 2

bm
s56d

< ± 0.676
1

Îbm
. s57d

The structure of the corresponding eigenvectors is indeed
like that found in simulations[9,10].

To calculate the contribution from the second term in Eq.
(46) to the leading order of the Lyapunov exponents, one has
to choose a suitable basis in which to express the function
Dr s1dsvd. The basis must be orthogonal with regard to the
chosen inner productk.u.l. Next, the matrix elements of the
operatorsBS

sid andBQ
sid must be calculated between elements

of the basis.
A simple, but suitable, basis is the set of functions that are

products of Hermite polynomials in the components of
vÎmb /2 parallel and perpendicular to the wave vectork.
The Hermite polynomialsHisxd form a complete orthogonal
basis with regard to integration against exps−x2d, and there-
fore their products will be orthogonal under the inner product
used here. The solution to Eq.(37) can thus be expanded as

Dr svd = o
l,p,q

el cl,p,q HpsvidHqsv'd, s58d

wherel can be either' or i, e' is k', andei is k.
By truncating all expressions at some finite order in the

polynomial expansion, one finds approximate values forls1d.
For good convergence one has to go beyond the zeroth- and
first-order Hermite polynomials. In the Appendix more de-
tails are given on the matrix representations of the truncated
operators and on the convergence of the Lyapunov exponents
in dependence on the order of truncation.

To sixth order in the polynomial expansion, the results for
n→0 andd=2 are

ltrans= ± 0.886
k

Îbm
, s59d
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llong = ± 0.607
k

Îbm
, s60d

vlong = ± 0.706
1

Îbm
. s61d

With respect to Eqs.(53)–(57) the corrections are largest for
the Lyapunov exponent of the longitudinal mode.

For low densities the form of the modes is predicted cor-
rectly by the calculations; the modes are split into nonpropa-
gating transverse and propagating longitudinal modes. For
number densityn=ra2=0.02, the Lyapunov exponents from
the simulations are

ltrans= ± 0.906
k

Îbm
, s62d

llong = ± 0.783
k

Îbm
, s63d

vlong = ± 0.703
1

Îbm
. s64d

The calculated Lyapunov exponent of the transverse mode
and the propagation speed of the longitudinal mode compare
to the values from the simulations, within 2% atn=0.02. The
Lyapunov exponent for the longitudinal mode deviates by
about 30%.

The results for higher densities are displayed in Fig. 4.
With increasing density the calculated values deviate increas-
ingly from the simulation results. For the longitudinal mode
the predicted real part of the Lyapunov exponent even drops
to 0 and the exponent becomes purely imaginary.

The deviations from the simulations can be attributed to
contributions from ring terms and possibly other contribu-
tions to a generalizedBQ operator that are at most of order
n2. From Eq.(44) one sees that such terms, working on the
nontrivial zero eigenfunctions ofBQ

s0d, contribute to the lead-
ing order terms in the density expansion ofDr s1d, just like
sBS

s0dd2. Therefore they have to be included in the second
term in Eq.(51). So in contrast to usual applications of ki-

netic theory, where ring terms only contribute to higher or-
ders in the density, in the present case they contribute to the
leading order. In the present calculation these contributions
are not included, but we are actively working on their evalu-
ation. Similarly, the ring terms will contribute to higher or-
ders in a density expansion of the Lyapunov exponents.
These contributions may be responsible for the discrepancies
between simulation results and Enskog theory for higher
densities, which show up in Figs. 4 and 5. For more details
on ring terms in kinetic theory, see Ref.[19].

It is interesting to compare our results to those by Mc-
Namara and Mareschal[14], who also based their work on
kinetic theory calculations. They do not derive equations for
the distribution functions, but go directly to hydrodynamic-
like equations for the moments. To close these, they make
hypotheses to factorize the fluxes. The resulting values for
the Lyapunov exponents in the low-density limit are less
close to the simulation values than those from our calcula-
tions. It is not clear that in this treatment the effects of the
nontrivial zero eigenfunctions ofBQ

s0d are accounted for.
Forster and Posch have also done simulations on similar

systems with soft potentials[20]. They roughly find a branch
again of Lyapunov exponents close to zero, but the sinuoidal
structure of the corresponding modes is much less clear[20].
It would be very interesting to calculate the Lyapunov expo-
nents with kinetic theory methods also for this case. It would
also be very interesting to look at small Lyapunov exponents
in nonequilibrium systems. However, in such systems the
calculations become more complicated because the station-
ary velocity distributions are not Maxwellian any more.

IX. CONCLUSION

In this paper, we have demonstrated how Lyapunov expo-
nents close to zero can be related to Goldstone modes. We
found the correct types of behavior in dependence on the
wave number of the exponents and their tangent-space eigen-
vectors. This was achieved through a kinetic theory ap-
proach, in which we used a molecular chaos assumption for
the pair distribution function to derive an equation similar to
the Enskog equation. For low densities this reduces
effectively to a generalized Boltzmann equation.

FIG. 4. The Lyapunov exponents for transverse and longitudinal
modes from the simulations[9,10] compared to the present
calculations.

FIG. 5. The velocities of the longitudinal mode from simula-
tions [9,10] compared to the present calculations.
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The calculated values for the exponents belonging to the
transverse modes at low densities are within a few percent of
the values found in the simulations[9,10]. The propagation
velocity for the transverse mode is within 1% of the simula-
tion values. The value for the Lyapunov exponent belonging
to the longitudinal mode deviates from the simulations by
30%. For higher densities, the predicted values deviate in-
creasingly more from the values found in the simulations.
These deviations are probably due to contributions from ring
collisions and similar terms. In most applications of the
Boltzmann equation and the Stoßzahlansatz such terms pro-
duce contributions to the relevant quantities which are one
order of higher order in the density, but in the problem at
hand they turn out to contribute to the leading order.
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APPENDIX A: EXPANSION IN HERMITE POLYNOMIALS

In order to solve Eq.(46), one must write the operators in
Eqs. (35) and (36) as matrices between the basis functions
described in Eq.(58). From now on we taked=2, but the
same calculations can easily be done for three dimensions.
We only show results for basis functions of up to linear order
in v. In Eq. (58) p andq can be equal to 0 or 1. In fact one
has to include higher powers to find good approximations for
the solutions to the original equations. If the first component
is the component parallel tok, the basis is ordered ass1,0d;
s0,1d; sÎbm/2 vi ,0d; s0,Îbm/2 vid; sÎbm/2 v' ,0d;
s0,Îbm/2 v'd. All coefficients are given to leading order in
n. In this notation the zero modes are

Dr 1
s0d = s1,0,0,0,0,0d, sA1d

s0,1,0,0,0,0d, sA2d

s0,0,12Î2,0,0,12Î2d . sA3d

Here, the subscript 1 indicates that basis functions up to first
order in v have been included. From Eqs.(43) and (46) it
follows that the operatorBS described in Eq.(35) is only
needed up to first order ink. One finds for the matrix ele-
ments ofBS in the expansion of Eq.(38)

BS,1
s0d =Î 2

bm

3Î2p

8
na 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 − 1 0 0 1

0 0 0 − 3 1 0

0 0 0 1 − 3 0

0 0 1 0 0 − 1

2 ,

sA4d

BS,1
s1d =Î 2

mb

Î2pi

16
na2 1

0 0 3 0 0 1

0 0 0 1 1 0

3 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

2 .

sA5d

The first three contributions toBQ as expanded in Eqs.(36)
and (39) have similar matrix representations of the form

BQ,1
s0d =

2

bm
2pn 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 − 1 1 0

0 0 0 1 − 1 0

0 0 0 0 0 0

2 , sA6d

BQ,1
s1d =

2

bm

Îpi

8
na 1

0 0 1 0 0 − 1

0 0 0 − 5 7 0

1 0 0 0 0 0

0 − 5 0 0 0 0

0 7 0 0 0 0

− 1 0 0 0 0 0

2 ,

sA7d

BQ,1
s2d =

2

bm

p

8
na2 1

− 2 0 0 0 0 0

0 2 0 0 0 0

0 0 − 1 0 0 0

0 0 0 5 − 4 0

0 0 0 − 4 3 0

0 0 0 0 0 1

2 .

sA8d

The operatorsi k̂ ·v and −sk̂ ·vd2 can also be written in this
way. One finds
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i k̂ ·v = −Î 1

bm 1
0 0 i 0 0 0

0 0 0 i 0 0

i 0 0 0 0 0

0 i 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 , sA9d

− sk̂ ·vd2 = −
1

2
Î 2

bm 1
1 0 0 0 0 0

0 1 0 0 0 0

0 0 3 0 0 0

0 0 0 3 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2 .

sA10d

With these matrices and Eq.(43) the vectors forDr s1d may
be expressed in terms ofDr s0d up to first order in the poly-
nomial expansion inv. With the orthogonality relation be-
tweenDr s1d andDr s0d, mentioned in Sec. VII A, this yields

Dr 1
s1d = −

2i

9naÎp1
0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

− 1 0 0 0 0 0

2 · Dr 1
s0d.

sA11d

These matrices can be used to find the 333 matrices in Eqs.
(46) and (48). The equation to leading order inn then
becomes

det1
−

7

18
+ Sl1

s1dÎbm

2
D2

0 0

0 −
7

18
+ Sl1

s1dÎbm

2
D2

il1
s1dÎbm

2

0 il1
s1dÎbm

2
− 1 +Sl1

s1dÎbm

2
D22 = 0. sA12d

Here, the indices of the matrix on the left-hand side are or-
dered according toDr

'

s0d ,Dr i
s0d ,Dr v

s0d. The matrix can be fac-
torized into two parts. One part describes the transverse
mode and produces a simple quadratic equation forls1d, with
the solution

l1
s1dÎbm

2
= ±

1

6
Î14< ± 0.623 61. sA13d

The remaining part yields the longitudinal mode. The solu-
tions to the fourth order equation forls1d are

l1
s1dÎbm

2
= ±

1

6
Îs7 ± iÎ455d < ± 0.639 552 ± 0.493 231i .

sA14d

These results must be scaled for the temperature. The same
calculation can be done with larger subsets of the basis. The
results are shown in Table I.

Using functions up to an odd power inv is different from
using functions up to an even power, because the odd pow-
ered functions contribute to different matrix elements than
the even powered functions. To determine whether the solu-
tions have converged, one must therefore look at the behav-
ior as the maximum power is increased by steps of 2. The
error in the results using up to sixth powers inv can be
estimated by comparing the values with the results for pow-
ers inv up to four. The error in the solutions when using up
to sixth powers ofv in the basis functions appears not to be
much larger than a tenths of a percent, except in the case of
the longitudinal mode, where it might be of the order of a
few tenth of a percent.

TABLE I. The Lyapunov exponents and the propagation veloci-
ties for the longitudinal mode calculated using products of Hermite
polynomials inv up to different orders.

n Transverseln
s1dÎbm/2 Longitudinalln

s1dÎbm/2

1 ±0.623 61 ±0.639 552±0.463 231i

2 ±0.623 61 ±0.422 807±0.499 026i

3 ±0.626 194 ±0.424 806±0.499 105i

4 ±0.626 194 ±0.428 599±0.498 952i

5 ±0.626 254 ±0.428 645±0.498 954i

6 ±0.626 254 ±0.429 104±0.498 953i
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